Theories with Ehrenfeucht-Fraïssé equivalent non-isomorphic models

Saharon Shelah

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J. Safran Campus, Givat Ram, Jerusalem 91904, Israel
Department of Mathematics, The State University of New Jersey, Rutgers, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway NJ, 08854-8019, United States of America
E-mail: shelah@math.huji.ac.il

Abstract

Our “long term and large scale” aim is to characterize the first order theories T (at least the countable ones) such that for every ordinal α there are λ, M_1, M_2 such that M_1 and M_2 are non-isomorphic models of T of cardinality λ which are $\text{EF}^{+}_{\alpha,\lambda}$-equivalent. We expect that as in the main gap [11, XII], we get a strong dichotomy, i.e., on the non-structure side we have stronger, better examples, and on the structure side we have an analogue of [11, XIII]. We presently prove the consistency of the non-structure side for T which is \aleph_0-independent (= not strongly dependent), even for $\text{PC}(T_1, T)$.

2000 Mathematics Subject Classification. 03C55, 03C68 03E40.
Keywords. Ehrenfeucht-Fraïssé games, Isomorphism, Model Theory, Classification Theory.

1 Introduction

1.1 Motivation

We first give some an introduction for non-model theorists. A major theme in the author’s work in model theory is to find “main gap theorems”. This means finding a dichotomy for the family of elementary classes (e.g., the classes of the form $\text{Mod}_T = \{ M ; M \models T \}$ for some (complete) first order theory T) such that each such class is either “very simple” or “very complicated”. The motivation for this is that we expect to have much knowledge to gain on the “very simple” ones.

Of course, this depends on the criterion for “very simple”. The main theorem of [11] does this essentially for countable T, with “very complicated” interpreted as “the number of models in Mod_T of cardinality λ is
maximal, i.e., 2^λ, for every λ.\(^1\) Here we are interested with interpreting “very complicated” as “for arbitrarily large cardinals, there are models $M_1, M_2 \in \text{Mod}_T$ of cardinality λ which are very similar but not isomorphic”, where “very similar” is interpreted as equivalent in the sense of Ehrenfeucht-Fraïssé games: These games have two players, the isomorphism player and the anti-isomorphism player. The isomorphism player constructs during the play, partial isomorphism of cardinality $< \lambda$, in each move the anti-isomorphism player demands some elements to be in the domain or the range, the isomorphism player has to extend the partial isomorphism accordingly; in the play there are α moves, $\alpha < \lambda$; and the isomorphism player wins the play if he has a legal move in each stage (cf. Definitions 2.3 and 2.5).

In the present paper we aim at finding the right variant of Ehrenfeucht-Fraïssé game that allows us to interpret “very complicated” as intended (cf. the discussion after Definition 2.3); we then give quite weak sufficient conditions for Mod_T being complicated. Let $T \subseteq T_1$ be complete first order theories. We denote by $\text{PC}(T_1, T)$ the set of reducts of models of T_1 in the language of T. We aim to show: If T is not strongly stable, α is an ordinal and $\lambda > |T|$ (or at least for many such λs) then there are $M_1, M_2 \in \text{PC}(T_1, T)$ of cardinality λ which are $\text{EF}_{\alpha, \lambda}^+$-equivalent for every $\alpha < \lambda$ but not isomorphic.\(^2\)

1.2 Related Work

This paper continues the work of [13] and [1]. For a history of this research area, cf. [19]. Recently, the author gave a new construction in [14] covering also \aleph_1; but, whereas it applies to every regular uncountable λ, it seems less amenable to generalizations.

By [11], for a countable complete first order theory T, we essentially know when there are $\mathcal{L}_{\infty, \lambda}(\tau_T)$-equivalent non-isomorphic models of T of cardinality λ for some λ: this is exactly when T is superstable with the NDOP and the NOTOP.\(^3\) Instead of the property “$\mathcal{L}_{\infty, \lambda}(\tau_T)$-equivalent non-isomorphic”, we can consider “$\text{EF}_{\alpha, \lambda}$-equivalent non-isomorphic”. This investigation was started by Hyttinen and Tuuri [5], and continued by Hyttinen and the present author [2, 3, 4]. In this paper, we shall replace “$\text{EF}_{\alpha, \lambda}$-equivalent non-isomorphic” by a technical variant “$\text{EF}_{\alpha, \lambda}^+$-equivalent non-isomorphic” (cf. Definition 2.5). By [2], if T is a stable, unsuper-

\(^1\)More information on the mentioned theorem can be found, e.g., in [17].

\(^2\)For the definition of $\text{EF}_{\alpha, \lambda}^+$, cf. Definition 2.5 below. This is a somewhat stronger relative of the standard notion of being $\text{EF}_{\alpha, \lambda}$-equivalent.

\(^3\)Cf. §5 and [9]. In this paper, we shall be referring regularly to the standard notions of classification theory, the “dimensional order property” (DOP) and the “omitting types order property” (OTOP). Theories without these properties are called NDOP and NOTOP, respectively. Definitions will be given in §1.3.
stable, complete first order theory, \(\lambda = \mu^+, \mu = \text{cf}(\mu) \geq |T| \), then there are \(\text{EF}_{\mu \times \omega, \lambda} \)-equivalent non-isomorphic models of \(T \) (even in \(\text{PC}(T_1, T) \)) of cardinality \(\lambda \). By our new variant \(\text{EF}^+_{\alpha, \lambda} \)-equivalent, such results are excluded; by it we define our choice test problem the version of being fat/lean, cf. the definitions in §1.3.

Among the variants of strongly dependent theories (cf. [6, §3], [7, 18] and [7, §5]), the best relative for us is “strongly \(\delta \) dependent”. We define this below (Definition 3.6), but we delay the treatment to a subsequent paper, [8], where we also deal with the relevant logics and more.

We prove here that if \(T \) is not strongly stable then \(T \) is consistently fat. More specifically, for every \(\mu = \mu^{<\mu} > |T| \), there is a \(\mu \)-complete class forcing notion \(\mathbb{P} \) such that in \(\mathbb{V}^\mathbb{P} \) the theory \(T \) is fat. The result holds even for \(\text{PC}(T_1, T) \). This gives new cases even for \(\text{PC}(T) \) by Example 1.1.

Also if \(T \) is unstable or has the DOP or OTOP (cf. the definitions in §1.3 or [11]) then it is fat, i.e., already in \(\mathbb{V} \).

Of course, it is not optimal to have to force the example, but note that such a result is certainly enough for proving there is no positive theory. Hence it gives us an upper bound on the relevant dividing lines.

1.3 Notation and basic definitions

Let us fix our model-theoretic notation. We fix a first-order theory \(T \). By \(\text{Mod}_T(\lambda) = \text{EC}_T(\lambda) \) we denote the class of models of \(T \) of cardinality \(\lambda \); \(\text{Mod}_T = \text{EC}_T := \bigcup \{ \text{EC}_T(\lambda) : \lambda \text{ a cardinality} \} \). If \(T \) is a theory or a sentence in a vocabulary \(\tau_T \supseteq \tau \), we write \(\text{PC}_T(T) = \{ M|\tau : M \text{ a model of } T \} \) (and if \(\tau = \tau_T \) we may omit \(\tau \)). If \(T \subseteq T_1 \) are complete first order theories then \(\text{PC}(T_1, T) = \text{PC}_{\tau_T}(T)(T_1) \).

If \(\bar{a} \) is a sequence, we denote its length by \(\text{lh}(\bar{a}) \); by \(\bar{a} \leq \bar{b} \) we mean that \(\bar{a} \) is an initial segment of \(\bar{b} \); and by \(\bar{a}|\alpha \) we denote the unique initial segment of \(\bar{a} \) of length \(\alpha \) for \(\alpha \leq \text{lh}(\bar{a}) \).

For regular \(\lambda > \aleph_0 \), we say that \((E, u) \) is a witness for \(S \) if (a) \(E \) is a club of the regular cardinal \(\lambda \); (b) \(u = \langle u_\alpha : \alpha < \lambda, a_\alpha \subseteq \alpha \) and \(\beta \in a_\alpha \Rightarrow a_\beta = \beta \cap a_\alpha \); and (c) for every \(\delta \in E \cap S, u_\delta \) is an unbounded subset of \(\delta \) of order-type \(< \delta \) (and \(\delta \) is a limit ordinal). For a regular uncountable cardinal \(\lambda \) let \(I[\lambda] = \{ S \subseteq \lambda : \text{some pair } (E, \bar{a}) \text{ is a witness for } S \} \).

If \(I \) is a linearly ordered set, we let \(\text{incr}_\alpha(I) := \{ \rho : \rho \text{ is an increasing sequence of length } \alpha \text{ of members of } I \} \); similarly \(\text{incr}_\alpha(I) := \bigcup \{ \text{incr}_\beta(I) : \beta < \alpha \} \). So instead of \([I]^{<\aleph_0} \) we may use \(\text{incr}_\omega(I) \).

For a model \(M, \bar{a} \in {}^\alpha M, B \subseteq M \) and \(\Delta \) a set of formulas, we are interested in formulas of the form \(\varphi(\bar{x}, \bar{y}) \), \(\bar{x} = \langle x_i : i < \alpha \rangle \). Here, \(\alpha \) may be infinite, but the formulas are normally first order, so all but finitely many of the \(x_i \)'s are dummy variables. We write \(\text{tp}_\Delta(\bar{a}, B, M) := \{ \varphi(\bar{x}, \bar{a}) : \varphi(\bar{x}, \bar{y}) \in \Delta \text{ and } \bar{b} \in \text{lh}(\bar{y}) A \text{ and } M \models \varphi(\bar{a}, \bar{b}) \} \).
Let Δ_{qf} be the set of quantifier-free formulas in $\mathcal{L}(\tau_M)$ and write tp_{qf} instead of $tp_{\Delta_{qf}}$. By $\hat{I}(\lambda, T)$ we denote the number of isomorphism types of models of T of cardinality λ; by $\hat{I}_\tau(\lambda, T)$ we denote the number of isomorphism types of $M \models T$ for a model $M \models T$ of cardinality λ; and by $\hat{I}_{\mathcal{E}}(\lambda, T)$ we denote the supremum of $|\{K|: K \subseteq PC_\tau(T), all M \in K have cardinality \lambda, and no M \in K has an elementary embedding into any N \in K \setminus \{M\})$; finally, we write $\hat{I}_{\mathcal{E}}(\lambda, T) := \chi$ if the supremum is obtained if not said otherwise. We let $\hat{I}_E(\lambda, T) := \hat{I}_{\mathcal{E}}(T)(\lambda, T)$.

Let T be a first order complete theory. We say that T has the OTOP ("omitting types order property") when T is stable and for some n, m letting $\bar{x} = \langle x_\ell : \ell < n \rangle, \bar{y} = \langle y_\ell : \ell < n \rangle, \bar{z} = \langle z_\ell : \ell < m \rangle$, there are complete types $p(\bar{x}, \bar{y}, \bar{z})$ such that for every λ there is a model M of T and $\bar{a}_\alpha \in nM$ for $\alpha < \lambda$ such that $\langle \bar{a}_\alpha : \alpha < \lambda \rangle$ is an indiscernible set and for $\alpha \neq \beta < \lambda$ the type $p(\bar{a}_\alpha, \bar{a}_\beta, \bar{z})$ is realized in M if $\alpha < \beta$. We say that T has the NOTOP when it is stable but fails to have the OTOP.

We say that T has the DOP ("dimensional order property") when T is stable and we can find $|T|^+$-saturated models M_ℓ of T for $\ell \leq 3$ such that $M_0 \prec M_1 \prec M_3$ for $\ell = 1, 2$ and $tp(M_1, M_2)$ does not fork over M_0, M_3 is $|T|^+$-prime over $M_1 \cup M_2$ but not $|T|^+$-minimal over it; equivalently for every $\bar{c} \in \omega^2(M_3)$ the type $tp(\bar{c}, M_1 \cup M_2, M_3)$ is $|T|^+$-isolated but there is no infinite $I \subseteq M_3$ which is indiscernible over $M_1 \cup M_2$. We say that T has NDOP when T is stable and fails to have the DOP.

Furthermore, we say T is fat when for every ordinal κ, for some (regular) cardinality $\lambda > \kappa$ there are non-isomorphic models M_1, M_2 of T of cardinality λ which are $EF_{\beta, \kappa, \kappa, \lambda}$-equivalent for every $\beta < \lambda$ (cf. Definition 2.5 below). If T is not fat, we say it is lean. We say the pair (T, T_1) is fat/lean when $(T_1 \subseteq T$ is a first order theory and) $PC(T_1, T) := \{M|\tau_T : M$ a model of $T_1\}$ is as above. We write that (T, \ast) is fat when for every first order $T_1 \supseteq T$ the pair (T, T_1) is fat. We say that (T, \ast) is lean otherwise.

The results in this paper (mainly Theorem 4.1) seem to cover cases of stable T with the NDOP and the NOTOP. But there are more examples (cf. [7, §5] for details):

Example 1.1.

1. There is a stable countable complete theory with the NDOP and the NOTOP which is not strongly dependent; (moreover not is not strongly4 stable), cf. [7, §5](G).

2. $T = \text{Th}(\omega_1(Z_2), E_{n})_{n<\omega}$ is as above where $Z_2 = \mathbb{Z}/2\mathbb{Z}$ as an additive group, $E_n = \{(\eta, \nu) : \eta, \nu \in \omega_1(Z_2)\}$ are such that $\eta|\omega_n = \nu|\omega_n$ where we interpret Z_2 as the additive group (so $(\mathbb{Z}/2\mathbb{Z}, +, 0)$) and $\omega_1(Z_2)$ as its ω_1-th power as an abelian group.
Definition 1.2. For a complete first order theory T, we say that ψ is a (μ, κ, T)-candidate if

1. $\psi \in \mathcal{L}_{\kappa^+, \omega}(\tau_s)$ for some vocabulary $\tau_s \supseteq \tau_T$ of cardinality $\leq \kappa$,

2. $\text{PC}_{\tau(T)}(\psi) \subseteq \text{EC}(T)$,

3. for some $\Phi \in \Upsilon_{\kappa}^{\omega, \text{tr}}$ satisfying $\tau_\Phi \supseteq \tau_\psi$ and $\text{EM}(\omega \supset \lambda, \Phi) \models \psi$ for every (equivalent some) λ and Φ witness T is not superstable (for a definition of $\Upsilon_{\kappa}^{\omega, \text{tr}}$, cf. Definition 3.2).

Recall that by [11, VII]:

Claim 1.3. If a first order complete theory T is not superstable then for some $\Phi \in \Upsilon_{\kappa}^{\omega, \text{tr}}$ (cf. Definition 3.2) and $\tau_2 \supseteq \tau(\psi)$ of cardinality κ, Φ witnesses that T is not superstable, i.e., for some formulas $\varphi_n(x, y_n) \in \mathcal{L}(\tau_T)$, if $I = \omega \lambda$, $M = \text{EM}(I, \Phi)$ then for $\eta \in \omega \lambda$, $n < \omega$ and $\alpha < \lambda$ we have $M \models \varphi_n[\bar{a}_\eta, a_{(\eta[n] - \langle \alpha \rangle)}]$ iff $\alpha = \eta(n)$.

Definition 1.4. Fix a structure I.

1. We say that $\langle \bar{a}_t : t \in I \rangle$ is indiscernible (in the model \mathfrak{C}, over A), if $A = \emptyset$ we may omit it) when $(\bar{a}_t \in \text{lh}(\bar{a}_t) \mathfrak{C}$ and) $\text{lh}(\bar{a}_t)$, which is not necessarily finite depends only on the quantifier-free type of t in I and if $n < \omega$ and $\bar{s} = \langle s_0, s_1, \ldots, s_{n-1} \rangle$, $\bar{t} = \langle t_0, \ldots, t_{n-1} \rangle$ realize the same quantifier-free type in I then $\bar{a}_\bar{t} := \bar{a}_{t_0} \cdots \bar{a}_{t_{n-1}}$ and $\bar{a}_\bar{s} = \bar{a}_{s_0} \cdots \bar{a}_{s_{n-1}}$ realize the same type (over A) in \mathfrak{C}.

2. We say that $\langle \bar{a}_u : u \in [I]^{<\aleph_0} \rangle$ is indiscernible (in \mathfrak{C}, over A) if $n < \omega, w_0, \ldots, w_{m-1} \subseteq \{0, \ldots, n-1 \}$ and $\bar{s} = \langle s_\ell : \ell < n \rangle$, $\bar{t} = \langle t_\ell : \ell < n \rangle$ realize the same quantifier-free types in I and $u_\ell = \{ s_k : k \in w_\ell \}$, $v_\ell = \{ t_k : k \in w_\ell \}$ then $\bar{a}_{u_\ell} \cdots \bar{a}_{u_{n-1}}, \bar{a}_{v_\ell} \cdots \bar{a}_{v_{n-1}}$ realize the same type in \mathfrak{C} (over A).

2 Games, equivalences and questions

We shall define a new notion of equivalence of models below, $\text{EF}^+_{\alpha, \lambda}$-equivalence. Why do we use this particular notion of equivalence? Consider for various γs the game $G^\gamma_\lambda(M_1, M_2)$ where $M_1, M_2 \in \text{Mod}_T(\lambda)$ and T is a complete first order $\mathcal{L}(\tau)$-theory (cf. Definition 2.3). During a play we can consider dependence relations on “short” sequences from M_ℓ (where $\leq 2^{\mid \tau \mid + \aleph_0}$ is the default value), definable in a suitable sense. So if T is a well understood unsuperstable theory like $\text{Th}(\omega \omega, E_n)_{n<\omega}$ with $E_n := \{(\eta, \nu) : \eta, \nu \in \omega \omega$ and $\eta[n] = \nu[n]\}$, then even for $\gamma = \omega + 2$ we have $E^+_{\gamma, \lambda}$-equivalence implies being isomorphic. This fits the thesis:
The desirable dichotomy characterized, on the family of first order T, by the property “$M_1, M_2 \in \text{Mod}_T(\lambda)$ are long game EF-equivalent iff they are isomorphic”, is quite similar to the one in [11, XIII]; the structure side is, e.g., T is stable and every $M \in \text{Mod}_T$ is prime over some $\bigcup \{M_\eta : \eta \in I\}$, where T is a subtree of $\kappa(T)^+ \parallel M$ and $\eta \triangleleft \nu \Rightarrow M_\eta \triangleleft M_\nu \triangleleft M, \|M_\eta\| \leq 2^{|T|}$ and $\eta \triangleleft \nu \in I$ implies $\text{tp}(M_\nu, \bigcup \{M_\rho : \rho \in T, \rho|\text{lh}(\nu) + 1 \neq \eta|\text{lh}(\nu) + 1\})$ does not fork over M_ν, i.e., $\M = \langle M_\eta : \eta \in T \rangle$ is a non-forking tree of models with $\leq \kappa_*(T)$ many levels.

We think the right (variant of the) question is described as follows. In [11], the original question was about the function $\lambda \mapsto \dot{I}(\lambda, T)$, but the answer is more transparent for the function $\lambda \mapsto \dot{E}(\lambda, T)$. If $\lambda = \mu^+, \mu = \mu^{|T|} = \text{cf}(\mu), T = \text{Th}(\omega_\omega, E_n)_{n<\omega}$ then (by [2, Th4.4]) for $\gamma \geq \mu \omega$, we get that equivalence implies isomorphism, but not for $\gamma < \mu \omega$; now our Theorem 2.6 is parallel to that. This seems to indicate that $\text{EF}^+_{\gamma, \lambda}$ is suitable for the questions we are asking: it uses the game EF^+, which is more complicated but the length of the game is much “smaller” in the relevant results.

Question 2.1. Classify first order complete T, or at least the countable ones by:

Version (A)$_1$. For every ordinal α, there are a cardinal λ and non-isomorphic $M_1, M_2 \in \text{Mod}_T(\lambda)$ which are $\text{EF}^+_{\alpha, \lambda}$-equivalent (at least, e.g. in some $\mathbf{V^P}, \mathbb{P}$ is $(2^{|T|+|\alpha|})^+$-complete forcing notion).

Version (A)$_0$. Similar version for $\text{EF}_{\alpha, \lambda}$.

Version (B)$_1$. For every cardinal $\kappa > |T|$ and vocabulary $\tau_1 \supseteq \tau_T$ and $\psi \in \mathcal{L}_{\kappa, \omega}(\tau_1)$ such that $\text{PC}_\tau(\psi) \subseteq \text{EC}_T$ has members of arbitrarily large cardinality we have $(a) \Rightarrow (b)$ where

(a) for every cardinal μ in $\text{PC}_\tau(\psi) := \{M|\tau : M$ a model of $\psi\}$ there is a μ-saturated member, and

(b) for arbitrarily large $\alpha < \lambda$ there are $M_1, M_2 \in \text{PC}_\tau(\psi)$ of cardinality λ with non-isomorphic τ-reducts which are $\text{EF}^+_{\alpha, \lambda}$-equivalent.

Version (B)$_0$. Like (B)$_1$ for $\text{EF}_{\alpha, \lambda}$.

Version (C)$_1$. Like (B)$_1$ using $\psi = \bigwedge T_1$ where $T_1 \supseteq T$ is a first order theory.

Version (C)$_0$. Like (B)$_0$ using $\psi = \bigwedge T_1$ where $T_1 \supseteq T$ is a first order theory.
If the reader is interested to know the reasons to prefer version (B) over version (C), we refer him or her to [17]. Now by the works quoted above, (cf. [3, 3.19] quoted in Theorem 5.1 below), we get that T satisfies (A)$_0$ iff T is a superstable theory with NDOP and OTOP iff (B)$_0$. Of course, if we change the order of the quantifier (to “for arbitrarily large some λ for every $\alpha < \lambda$...”) this fails, but we believe solving (A)$_1$ and/or (B)$_1$ will eventually be useful for this case as well. We sum all of this up in the following conjecture.

Conjecture 2.2. For a complete (first order) T the following are equivalent:

(a) for every ordinal α there is some λ and there are non-isomorphic, $\text{EF}^+_{\alpha,\lambda}$-equivalent models $M_1, M_2 \in \text{EC}_T(\lambda)$,

(b) for arbitrarily large λ and for every $\alpha < \lambda$ there are non-isomorphic, $\text{EF}^+_{\alpha,\lambda}$-equivalent models $M_1, M_2 \in \text{EC}_T(\lambda)$,

(c) for every sufficiently large regular λ there are non-isomorphic $M_1, M_2 \in \text{EC}_T(\lambda)$ which are $\text{EF}^+_{\alpha,\lambda}$-equivalent for every $\alpha < \lambda$.

And similarly for “some $T_1 \supseteq T$, PC(T_1, T) is lean.”

We conjecture that we can prove Conjecture 2.2 if we prove that a (countable) fat T is close enough to superstable. Such a result will enable us to generalize proofs in [11, XII] (only now the tree has $\leq \omega_1$ levels rather than ω levels).

Definition 2.3. If M_1, M_2 are models with the same vocabulary and α is an ordinal and μ is a cardinals, and if f is a partial isomorphism from M_1 to M_2, we define the game $G^\mu_\alpha(f, M_1, M_2)$ between the players ISO, the isomorphism player and AIS, the anti-isomorphism player as follows:

(a) A play lasts α moves.

(b) After β moves a partial isomorphism f_β from M_1 into M_2 is chosen, increasing continuously with β.

(c) In the $(\beta + 1)$st move, the player AIS chooses $A_{\beta,1} \subseteq M_1, A_{\beta,2} \subseteq M_2$ such that $|A_{\beta,1}| + |A_{\beta,2}| < 1 + \mu$ and then the player ISO chooses $f_{\beta+1} \supseteq f_\beta$ such that $A_{\beta,1} \subseteq \text{Dom}(f_{\beta+1})$ and $A_{\beta,2} \subseteq \text{Rang}(f_{\beta+1})$.

(d) If $\beta = 0$, ISO chooses $f_0 = f$; if β is a limit ordinal ISO chooses $f_\beta = \bigcup\{f_\gamma : \gamma < \beta\}$.

Player ISO loses if he had no legal move for some $\beta < \alpha$, otherwise he wins the play.

A few notational conventions: Replacing α by $< \alpha$ means “for every $\beta < \alpha$”. If μ is 1, we may omit it, and we may write $\leq \mu$ instead of μ^+. Furthermore, if $f = \varnothing$ we may write $G^\alpha_\mu(M_1, M_2)$.

Based on Definition 2.3, we now say that M_1, M_2 are EF_{α}-equivalent if the isomorphism player has a winning strategy in the game $G^\alpha(M_1, M_2)$, and M_1, M_2 are $\text{EF}_{\alpha, \mu}$-equivalent or G^α_μ-equivalent if the isomorphism player has a winning strategy in the game $G^\alpha_\mu(M_1, M_2)$ defined below.

Let us discuss why we need a more complicated notion EF^+ at all? First, if we like a parallel of [11, XIII], i.e., a game in which set of small cardinality are chosen (e.g., $|T|$ or $2^{|T|}$) rather than just $\lambda = \|M_\ell\|$, clearly $\text{EF}_{\alpha, \mu}$ cannot help.

Also, consider $\lambda = \mu^+, \mu = \text{cf}(\mu) > |T|$ and an ordinal $\alpha < \lambda$ and ask for which T: “Does $\text{EF}^+_{\alpha, \mu, \lambda}$-equivalence imply isomorphism for any two models M_1, M_2 of T of cardinality λ?” Now we know (by earlier works, cf. Corollary 5.7) for countable T that if $\alpha \in [\omega, \mu \times \omega]$ that the answer (for the pair (α, λ)) is as in the main gap for \hat{I}^ℓ (T superstable with NDOP and NOTOP). But for larger $\alpha < \lambda$ this is not so, as, e.g., for the prototypical stable unsuperstable T for $\alpha = \mu \times (\omega + 2)$ we get the answer “yes, it is low”.

Let us consider the reasons for this. In other words, why do we need $\mu \times (\omega + 2)$ moves, not $(\omega + 2)$ moves? Based on this question, we shall now formulate EF^+. We think that with $\text{EF}^+_{\alpha, \theta, \mu, \lambda}$ for small α, θ, μ and just $\lambda = \|M_\ell\|$ we get the desired dichotomy. In general, we expect the results will be robust under choosing such an exact game; and will resolve the case $\alpha \in (\mu \times (\omega, 2), \lambda)$ above.

More specifically, the reason why $\text{EF}^+_{\alpha, \lambda}$-equivalence does not imply isomorphism for $M_1, M_2 \in \text{EC}_{\lambda}(T)$, even in the case $T = \text{Th}(\omega, E_n)_{n<\omega}$, is the following: Fix a winning strategy st for $G_{\alpha, \lambda}(M_1, M_2)$. If we let $\langle a^\ell_\alpha/E^M_1 : \alpha < \lambda \rangle$ list M_ℓ/E^M_1 and $R = \{ (\alpha, \beta) : \text{in some short initial segment } x \text{ of a play of } G_{\alpha, \lambda}(M_1, M_2) \text{ in which the player ISO uses the strategy } \text{st} \}$, we have $f^\lambda_x(a^1_\alpha E^M_1 a^2_\beta)$, we have to find a function h from λ onto λ whose graph is $\subseteq R$. Now being in a winning position is only enough to show the existence of such h when the game is long enough. For $\text{EF}^+_{\alpha, \theta}$ this changes.

Definition 2.4. We call subsets $R \subseteq [X]^{<\aleph_0}$ pre-dependence relations on X. We say $Y \subseteq X$ is R-independent when $[Y]^{<\aleph_0} \cap R = \varnothing$; of course, an index set with repetitions is considered dependent. We say R or (X, R) has character $\leq \kappa$ when for every R-independent $Y \subseteq X$ and $\{x\} \subseteq X$ for some $Z \subseteq [Y]^{<\kappa}$ the set $(Y \setminus Z) \cup \{x\}$ is R-independent. We say that R is a
k-dependence relation on X (if $k = 1$ we may omit it) when R is a subset of $[X]^{<\aleph_0}$, if $k = 0$ then $R = [X]^{<\aleph_0}$, if $k = 2$ then R-independence satisfies the exchange principle (so dimension is well defined, as for regular types), and if $k = 1$ then R is trivial. We say R is trivial when for every $Y \subseteq X, Y$ is R-independent iff every $Z \subseteq [Y]^{<\omega}$, is R-independent. For a 1-dependence relation R, let $E_R = \{(x_1, x_2) : x_1 = x_2 \in X \text{ or } \{x_1\}, \{x_2\} \in R \text{ or } \{x_1, x_2\} \in R \wedge \{x_1\} \notin R \wedge \{x_2\} \notin R\}$ is an equivalence relation on X; pedantically we should write $E_{X,R}$.

Definition 2.5. For an ordinal γ, cardinals $\theta \leq \mu$, vocabulary τ and τ-models M_1, M_2 and partial isomorphism f from M_1 to M_2, we define a game $G_{\gamma, \theta, \mu, \lambda}^{\gamma, k, \mu, \lambda}(f, M_1, M_2)$, between the player ISO (isomorphism) and AIS (anti-isomorphism).

A play last γ moves; in the βth move a partial isomorphism f_β from M_1 to M_2 is chosen by ISO, extending f_α for $\alpha < \beta$ such that $f_0 = f$ and for limit β we have $f_\beta = \bigcup \{f_\alpha : \alpha < \beta\}$ and for every $\beta < \alpha$ the set $\text{Dom}(f_{\beta+1}) \setminus \text{Dom}(f_{\beta})$ has cardinality $< 1 + \mu$; let f_β^f be f_β if $\ell = 1$, f_β^{-1} if $\ell = 2$. During a play, the player ISO loses if he has no legal move and he wins in the end of the play iff he always had a legal move. In the $(\beta + 1)$st move, the AIS player does one of the following cases:

Case 1. The AIS player chooses $A_\ell = A_\beta^\ell \subseteq M_\ell$ for $\ell = 1, 2$ such that $|A_1| + |A_2| < 1 + \mu$ and then ISO chooses f_β as above such that $A_\ell \subseteq \text{Dom}(f_\beta^\ell)$ for $\ell = 1, 2$.

Case 2. First the AIS player chooses

4 Note that for $k = 0, 1$ we require “$\mathcal{L}(\tau_R)$-definable R_ℓ such that f maps the definition of R_1 to the one of R_ℓ”; moreover we expect that we can demand it is as in the case of using regular types.

(a) if $k = 0$ then $R_\ell = [^{\theta >}(M_\ell)]^{<\aleph_0}$, so really an empty case

(b) if $k = 1, 2$ then R_ℓ is a k-dependence relation

(c) if $k = 1, 2$ and $\ell = 1, 2$ and $n < \omega$ and $\bar{a}_0, \ldots, \bar{a}_{n-1} \in ^{\theta >}(M_\ell)$ then the truth value of $\{\bar{a}_0, \ldots, \bar{a}_{n-1}\} \in R_\ell$ depends just on the complete first order type which $\langle \bar{a}_0, \ldots, \bar{a}_{n-1}\rangle$ realizes on $\text{Dom}(f_\beta^\ell)$ inside the model M_ℓ.

After that, player ISO does one of the following:

Subcase 2A. First, assume $k = 2$. The player ISO chooses $\langle (\bar{a}_1^\ell, \bar{a}_2^\ell) : \zeta < \lambda \rangle$ such that for $\ell = 1, 2$:

(\alpha) for each $\zeta < \lambda$ there is some $\varepsilon < \theta$ such that $\bar{a}_\zeta^\ell \in \varepsilon(M_\ell)$
(\beta) \langle \bar{a}^\ell_\zeta : \zeta < \lambda \rangle \text{ is independent for } R^\ell \\
(\gamma) \text{ each } \bar{a} \in A^\ell \text{ does } R^\ell\text{-depend on } \langle \bar{a}^\ell_\zeta : \zeta < \lambda \rangle.

Then AIS chooses \zeta < \lambda \text{ and ISO chooses } f_{\beta+1} \supseteq f_\beta \text{ such that } f_\beta(\bar{a}^1_\zeta) = \bar{a}^2_\zeta.

Now assume \kappa = 1. Then player ISO chooses equivalence relations \(E^\ell_\kappa \) on \(\theta^\kappa(M_\ell) \) which refine the relations \(E^\ell_\kappa \) (cf. Definition 2.4) and equality of length, and chooses a function \(h \) from the family of \(E^\ell_1 \)-equivalence classes onto the family of \(E^\ell_2 \)-equivalence classes which preserve cardinality up to \(\lambda \); that is, if \(h(a_1/E_1) = \bar{a}_2/E_2 \) then \(\ell h(a_1) = \ell h(\bar{a}_2), \min\{\dim(a_1/E_1), \lambda\} = \min\{\dim(\bar{a}_2/E_2), \lambda\} \).

Then the AIS player chooses a pair \((\bar{a}_1, \bar{a}_2) \) such that \(\bar{a}_\ell \in \theta^\kappa(M_\ell) \) for \(\ell = 1, 2 \) such that \(h(a_1/E_1) = (\bar{a}_2/E_2) \) and ISO has to choose \(f_{\beta+1} \supseteq f_\beta \) such that \(f(\bar{a}_1) = \bar{a}_2 \).

Subcase 2B. The player ISO chooses \(f_{\beta+1} \supseteq f_\beta \) as required such that for some \(n < \omega \) and \(\bar{a}_1^1 \in e^{\Dom(f_\beta)} \) for \(\ell \leq n \) we have: \(\{\bar{a}_0^1, \ldots, \bar{a}_{n-1}^1\} \) is \(R^1 \)-dependent iff \(\{f_\beta(\bar{a}_0^1), \ldots, f_\beta(\bar{a}_{n-1}^1)\} \) is not \(R^2 \)-dependent.

Based on Definition 2.5, we say that models \(M_1, M_2 \) are \(\EF^+_{\gamma, \theta, \mu, \lambda} \)-equivalent (\(k \in \{0, 1, 2\} \)) if the player ISO has a winning strategy in the game \(G^k_{\gamma, \theta, \mu, \lambda}(M_1, M_2) \). In this, we always assume \(\kappa_0 \leq \theta \leq \mu \). If \(\mu = \min\{\|M_1\|, \|M_2\|\} \), \(k = 1 \), or \(\theta = (2^{|\tau(M_\ell)| + \kappa_0^+})^+ \), we may omit these parameters.

Theorem 2.6. Let \(T = \Th(\omega^\omega, E_n)_{n<\omega} \) with \(E_n = \{(\eta, \nu) : \eta \in \omega^\omega, \nu \in \omega^\omega, \eta|n = \nu|n\} \). Then if \(M_1 \) and \(M_2 \) are models of \(T \) of cardinality \(\lambda \) that are \(\EF^+_{\omega^2, \kappa_0, \kappa_0, \lambda} \)-equivalent, they are isomorphic.

Proof. We choose a winning strategy \(\bf{st} \) of the isomorphism player in the game \(G_{\omega^2, \kappa_0, \kappa_0, \lambda}(M_1, M_2) \).

Step A. By the choice of \(T \) for \(\ell = 1, 2 \) we can find \(T_\ell, \bar{a}_\ell \) such that \(T_\ell \) is a subtree of \(\omega^\lambda \), \(\bar{a}_\ell = \langle a^\ell_\eta : \eta \in T^\ell_\ell \rangle, a^\ell_\eta \in M_\ell \), and if \(\eta \in T^\ell_\ell \) and \(\ell h(\eta) = n \) then \(\langle a^\ell_\eta/E^\ell_{n+1} : \nu \in \suc T^\ell_\eta(\eta) \rangle \) lists \(\{b/E^\ell_{n+1} : b \in M_\ell \} \) without repetitions. Let \(T^\ell_{\ell,n} = \{\eta \in T^\ell_\ell : \ell h(\eta) = n\} \) and let \(T^\ell_{\ell,\omega} = \{\eta \in \omega^\lambda : \eta|n \in T^\ell_\ell \text{ for every } n < \omega\} \). Lastly, let \(\bar{\mu}_\ell = \langle \mu^\ell_\eta : \eta \in T^\ell_{\ell,\omega}\rangle \), where

\[
\mu^\ell_\eta = \{|b \in M_\ell : b \in a^\ell_\eta|n/E^\ell_{M_\ell} \text{ for every } n < \omega\}.
\]

Step B. Clearly \(M_1, M_2 \) are isomorphic if and only if there is an isomorphism \(h \) from \(T^\ell_1 \) onto \(T^\ell_2 \) (i.e., \(h \) maps \(T^\ell_{1,n} \) onto \(T^\ell_{2,n} \), \(h \) preserves the length, \(\eta < \nu \) and \(\eta \neq \nu \)) such that letting \(h_n = h|T^\ell_{1,n} \) and \(h_\omega \) be the mapping from \(T^\ell_{1,\omega} \) onto \(T^\ell_{2,\omega} \) which induces \(h_\omega \) (so \(h_\omega(\eta) = \bigcup_{n<\omega} h_n(\eta|n) \)) we have that \(\eta \in T^\ell_{1,\omega} \) implies \(\mu^1_\eta = \mu^2_{h(\eta)} \).
STEP C. By induction on \(n \) we choose \(h_n, \bar{x}_n \) such that \(h_n \) is a one-to-one mapping from \(T_{1,n} \) onto \(T_{2,n} \), if \(m < n \) and \(\eta \in T_{1,n} \) then \(h_m(\eta|m) = (h_n(\eta))|m, \bar{x}_n = (\bar{x}_n^\eta : \eta \in T_{1,n}) \), and

1. (a) \(\bar{x}_n^\eta \) is an initial segment of a play of the game \(\mathcal{O}_{\omega+2, \aleph_0, \aleph_0, \lambda}(M_1, M_2) \),
 (b) in \(\bar{x}_n^\eta \) only finitely many moves have been played (can specify),
 the last one is \(m(\bar{x}_n^\eta) \),
 (c) in \(\bar{x}_n^\eta \), the player ISO uses his winning strategy \(\text{st} \).

2. If \(\eta_1 \in T_{1,n} \) and \(\eta_2 = h_n(\eta_1) \) then for some \(b_1 \in \text{Dom}(f_m(\bar{x}_n^\eta)) \) we have
 \[b_1 \in a_\nu^1/E_n^{M_1} \] and \(f_m(\bar{x}_n^\eta)(b_1) \in a_\nu^2/E_n^{M_2} \).

3. If \(\nu < \eta \in T_{1,n} \) then \(\bar{x}_\nu^{h(\nu)} \) is an initial segment of \(\bar{x}_\eta^n \).

Why does the induction work? Note that \(h_0 \) is uniquely determined. As for \(\bar{x}_0^\eta \), any \(\bar{x} \) as in 1. is fine, as long as at least one move was done (note that \(E_0^{M_1} \) has one and only one equivalence class). In the successor step, \(n = m + 1, h_m, \bar{x}_m \) has been chosen. Let \(\eta_1 \in T_{1,m} \) and let \(\eta_2 = h_n(\eta_1) \) and
\[F_{\eta_1} := \{ (\nu_1, \nu_2) : \nu_1 \in \text{succ}_{T_1}(\eta_1), \nu_2 \in \text{succ}_{T_2}(\eta_2) \} \] and there is \(\bar{x} \) as in 1. such that \(\bar{x}_m^{\eta_1} \) is an initial segment of \(\bar{x} \) and for some \(b_1 \in \text{Dom}(f_m(\bar{x})) \) we have
\[b_1 \in a_{\nu_1}^1/E_n^{M_1} \] and \(f_m(\bar{x})(b_1) \in a_{\nu_2}^2/E_n^{M_2} \). Now to do the induction step, it suffices to prove that: if \(\eta_1 \in T_{1,m} \) then there is a one-to-one function \(h_{n, \eta_1} \) from \(\text{succ}_{T_1}(\eta_1) \) onto \(\text{succ}_{T_2}(\eta_2) \) such that \(\nu \in \text{succ}_{T_1}(\eta_1) \Rightarrow (\nu, h_{n, \eta_1}(\nu)) \in F_{\eta_1} \).

However by Case 2 in Definition 2.5 this holds.

STEP D. So we can find \(\langle h_n : n < \omega \rangle, \langle \bar{x}_n : \eta \in T_1 \rangle \) as in STEP C. Let \(h := \bigcup\{ h_n : n < \omega \} \), clearly it is an isomorphism from \(T_1 \) onto \(T_2 \) and \(h_\omega \) is well defined (cf. STEP B). So it is enough to check the sufficient condition for \(M_1 \cong M_2 \) there, i.e., \(\eta \in T_1, \omega \Rightarrow h_{\mu_1, \eta} = h_{2, \omega(\eta)} \). But if \(\eta \in T_1, \omega \) then
\[\langle \bar{x}_n : n < \omega \rangle \] is a sequence of initial segments of a play of \(G \) with ISO using his winning strategy \(\text{st} \), increasing with \(n \), each with finitely many moves. So \(\bar{x}_n \), defined as the limit \(\langle \bar{x}_{n|\omega} : n < \omega \rangle \), is an initial segment of the play \(\mathcal{G} \), with \(\omega \leq \omega \) moves and \(f(\bar{x}_n^\eta) \subseteq \bigcup\{ f_m(\bar{x}_m^\eta) : n < \omega \} \).

Clearly if \(n < \omega \), then \(f(a_{\nu}^1/E_n^{M_2}a_{h_n(\eta|n)}^2) \). As we have one move left and can use Case 2 in Definition 2.5 we are done.

The following claim says that the games in Definitions 2.3 and 2.5 are equivalent, i.e., the ISO player wins one iff he wins the other (when \(\lambda = \mu^+, \alpha < \lambda \) divisible enough).

Theorem 2.7. Let \(M_1, M_2 \) are \(\tau \)-models, \(\lambda = \lambda^+, \lambda_1 \geq \mu \) and \(\theta \leq \mu \leq \lambda \) and \(\gamma \leq \mu \) and \(\text{cf}(\mu) < \mu \Rightarrow \lambda_1 > \mu \) and \(\lambda \in I[\lambda] \). Define \(\gamma(*) := \lambda_1 \times \gamma. \)
1. Assume that M_1, M_2 are $\text{EF}_{\gamma, \mu}$-equivalent and that $||M_\ell|| = \lambda = \lambda^{<\theta}$ for $\ell = 1, 2$. Then M_1, M_2 are $\text{EF}_{\gamma, \mu}$-equivalent.

2. If M_1, M_2 are $\text{EF}_{\gamma, \mu}$-equivalent, they are EF_{γ}-equivalent.

3. If $\gamma_1 \leq \gamma_2, \theta_1 \leq \theta_2, \mu_1 \leq \mu_2, \lambda_1 \leq \lambda_2$ and M_1, M_2 are $\text{EF}_{\gamma_2, \theta_2, \mu_2, \lambda_2}$-equivalent, they are $\text{EF}_{\gamma_1, \theta_1, \mu_1, \lambda_1}$-equivalent.

Proof. To show 1., let us assume $\gamma(*) = \lambda_1 \times \lambda_1 \times \gamma$. Let \textbf{st} be a winning strategy of the player ISO in the game $G_{\mu}^{\gamma(*)}$. We try to use it as a winning strategy of the ISO player in the game $G_{\gamma, \theta, \mu, \lambda}(M_1, M_0)$. Well, the f^x_α may have too large a domain, so in the βth move ISO plays as auxiliary moves x_β for $G_{\gamma, \theta, \mu, \lambda}$ and $A^1_\beta \subseteq \text{Dom}(f^x_\alpha)$ of cardinality $< \mu$ (or $\leq \mu$ if $\mu > \text{cf}(\mu) \land \beta \geq \text{cf}(\mu)$) and he actually plays $f^x_\alpha a | A^1_\beta$, i.e., is an initial segment of a play of $G_{\gamma, \mu}$ of length β in which the ISO player uses the strategy \textbf{st} such that $[\beta_1 < \beta \Rightarrow x_{\beta_1}]$ is an initial segment of x_β.

The only problem is when $\beta = \omega + 1$ and if Case 2 of Definition 2.5 occurs, i.e., with player AIS choosing R^1_β, R^2_β. We may for notational simplicity choose $\varepsilon < \theta$ and deal only with $A_\ell \cap \varepsilon$, $\varepsilon(M_\ell)$ for $\ell = 1, 2$.

We can consider x_β extending x_α; if it is as required in Subcase 2B of Definition 2.5 we are done. Let $F^1_\beta = \{ (a_1, a_2) : a_1, a_2 \in A_\beta \}, F^2_\beta = \{ (a_2, a_1) : (a_1, a_2) \in F^1_\beta \}, A_\ell = A_\ell \cap \varepsilon \subseteq M_\ell$, $A^2_\ell = \{ a \in A_\ell : \text{the number of } b \text{ such that } (a, b) \in F^2_\beta \text{ is } \leq \lambda \}$, and $A^3_\ell = A^2_\ell \cup \{ a : \text{for some } b \in A^2_{\ell - 1} \text{ we have } (a, b) \in F^1_\beta \}$. So $|A^1_\ell| \leq \lambda$ by the assumption and let $\bar{\alpha} : \zeta < \lambda \} \text{ list } A^3_\ell \text{ possibly with repetitions. Then by the basic properties of dependence relations, it is enough to take care of } A^3_\ell \subseteq M_\ell \text{ for } \ell = 1, 2$. So we can continue.

Let S be the set of limit ordinals $\delta < \lambda$ such that: for a club of $\delta_\ast \in [\delta, \lambda)$ of cofinality \aleph_0 we can find $\bar{b}_\ell \in [\delta, \delta_*]$ for $\ell = 1, 2$ such that $\bar{b}_\ell \subseteq \{ \bar{a}_\ell : \zeta \in [\delta, \delta_*] \}$, $\bar{b}_\ell \in [\delta, \delta_*]$, $\bar{b}_\ell \subseteq \{ \bar{a}_\ell : \zeta \in [\delta, \delta_*] \}$ is R_ℓ-independent over $\{ \bar{a}_\ell : \zeta < \delta \}$, and if $\zeta < \delta_\ast$, \bar{a}_ℓ, then \bar{a}_ℓ does R_ℓ-depend on $\{ \bar{a}_\ell : \zeta < \delta \} \cup \{ \bar{b}_\ell : \zeta \in [\delta, \delta_*] \}$.

If S is not stationary we can easily finish (we start by playing ω moves in G^μ_ℓ). So assume S is stationary, hence for some regular $\sigma \leq \lambda_1$ the set $S' = \{ \delta \in S : \text{cf}(\delta) = \sigma \}$ is stationary. By playing $\sigma + \omega$ moves (recalling $\lambda \in \text{I}[\lambda]$ we get a contradiction to the definition of S.

Claims 2. and 3. are obvious.

In Theorem 2.7, Claim 1., to get the exact $\gamma(*)$, we combine partial isomorphisms. So we simulate two plays and use the composition of the f^x_α's from two plays where each player ISO uses a winning strategy \textbf{st}. Q.E.D.
Proposition 2.8. Define a variant of Definition 2.5 as follows: in Case 2 use a dependence relation R_ℓ on $\kappa \times \theta>(M_\ell)$ (or equivalently $C \times \theta>(M_\ell)$ for a set C of cardinality $\leq \kappa$). If $\kappa \leq 2^{<\theta}$ we get an equivalent game.

In Proposition 2.8, we can replace $2^{<\theta}$ by a larger cardinal for “interesting” cases of M_1, M_2.

Proof. Without loss of generality, $|M_\ell| > 1$, now let $\langle \eta_\alpha : \alpha < \kappa \rangle$ be a sequence of pairwise distinct members of $\kappa > 2$. now we define $F_\ell : \theta>(M_\ell) \rightarrow \theta>(M_\ell)$ as follows: for $\bar{a} \in \theta>(M_\ell)$ let $i(\bar{a}) = \min\{i : 2i \geq \operatorname{lh}(\bar{a}) \text{ or } 2i + 1 < \operatorname{lh}(\bar{a}) \land a_{2i} \neq a_{2i+1}\}$ and $\eta_\alpha = \langle \operatorname{tv}(a_{2i(\bar{a})+2j} = a_{2i(\bar{a})+2+2j+1}) : j \geq 0 \text{ and } 2i(\bar{a}) + 2 + 2j + 1 < \operatorname{lh}(\bar{a}) \rangle \text{ (where tv stands for “truth value”), and}$ $\alpha(\bar{a}) = \operatorname{Min}\{\alpha < \kappa : \text{ if } \alpha < \kappa \text{ then } \eta_\alpha = \eta_\alpha\}$. Finally, let $F_\ell(\bar{a})$ be $\langle (\alpha(\bar{a}), a_{j} : j < i(\bar{a})) \rangle$ if $i(\bar{a}) \text{ or } \alpha(\bar{a}) < \kappa$, and $(0, \bar{a})$ otherwise. Define $R'_\ell := \{\mathcal{A} : \mathcal{A} \subseteq \theta>(M_\ell) \text{ and } F(\bar{a}) : \bar{a} \in \mathcal{A} \in R \text{ or for some } \bar{a}' \neq \bar{a}'' \in \mathcal{A} \text{ we have } F(\bar{a}') = F(\bar{a}'')\}$. Now check. Q.E.D.

Proposition 2.9. Let K be a class of τ_0-structures and $\Phi \in \mathcal{Y}[K]$ (cf. Definition 3.2), used here for the class $K = K_\phi$ of linear orders and K_ϕ (cf. Definition 3.1). Suppose that the structures I_1, I_2 are $\operatorname{EF}^+_{\gamma, \theta, \mu, \lambda}$-equivalent, that $M_\ell = \operatorname{EM}_\tau(I_\ell, \Phi)$ for $\ell = 1, 2$ for some $\tau \subseteq \tau_\Phi$, and that $\mu \geq \aleph_0$ and $|\tau_\Phi| < \theta$. Then M_1, M_2 are $\operatorname{EF}^+_{\gamma, \theta, \mu, \lambda}$-equivalent.

Proof. Let \mathbf{st} be a winning strategy of player ISO in the game $G^+_{\gamma, \theta, \mu, \lambda}(I_1, I_2)$. We define a strategy $\mathbf{st}_* \subseteq \mathbf{st}$ of player ISO in the game $G^+_{\gamma, \theta, \mu, \lambda}(M_1, M_2)$ as follows.

During a play of it after β moves a partial isomorphism f_α^* from M_1 to M_2 has been chosen, but player ISO also simulates a play of $G^+_{\gamma, \theta, \mu, \lambda}(I_1, I_2)$ in which we call the function h_α, and in which he uses the winning strategy \mathbf{st} and $f_\alpha \subseteq h_\alpha$ where h_α is defined by $\hat{h}_\alpha(\sigma_{M_1}(a_{t_0}, \ldots, a_{t_{n-1}})) = \sigma_{M_\ell}(a_{h_\alpha(t_0)}, \ldots, a_{h_\alpha(t_{n-1})})$

for $n < \omega$, a term $\sigma(x_0, \ldots, x_{n-1})$ of τ_Φ, and $t_0, \ldots, t_{n-1} \in \text{Dom}(h_\alpha)$.

Why can ISO follow this strategy \mathbf{st}_*? Suppose we arrive in the βth move. The point to check is Case 2 in Definition 2.5, so the AIS player has chosen R_1, R_2, A_1, A_2 as there. Let $\{\hat{\sigma}_z(x) : \zeta < \gamma^\beta\}$ list $\{\sigma(x) : \hat{\sigma}(x) = \langle \sigma_i(x) : i < \operatorname{lh}(\hat{\sigma}) \rangle, \operatorname{lh}(\hat{\sigma}) \theta, \operatorname{lh}(\hat{\sigma}) < \theta \text{ and each } \sigma_i \text{ is a } \tau_\kappa \text{-term. Clearly}$ $\theta>(M_\ell) = \{\hat{\sigma}_{M_\ell}^\zeta(\bar{t}) : \zeta < \gamma^\beta \text{ and } \bar{t} \in \operatorname{lh}(\hat{\zeta}) (I_\ell)\}$, so by Proposition 2.8, we can assume “R_ℓ is a dependence relation on $\{\langle \zeta, \bar{\zeta} \rangle : \zeta < \gamma^\beta, \bar{\zeta} \in \theta(I_\ell) \text{ and } \operatorname{lh}(\bar{\zeta}) = \operatorname{lh}(\bar{\zeta})\}$”. I.e., $R'_\ell = \{u : \hat{\sigma}_{M_\ell}^\zeta \in u \} \subseteq R_\ell$ or there are $\langle \zeta_1, \bar{t}_1 \rangle \neq \langle \zeta_2, t_2 \rangle$ from u such that $\hat{\sigma}_{M_\ell}^\zeta(\bar{a}_{\bar{t}_1}) = \hat{\sigma}_{M_\ell}^\zeta(\bar{a}_{\bar{t}_2})$. The rest is clear. Q.E.D.
3 The properties of T and relevant indiscernibility

In [11, VIII], [15, VI] we use as indiscernible sets trees with $\omega + 1$ levels, suitable for dealing with unsuperstable (complete first order) theories. Here instead we use a linear order and family of ω-sequences from it, suitable for our case. In the following, the letters “oi” stands for “order” and “increasing” (ω-sequences).

Definition 3.1. We let K^\oi_λ be the class of structures J of the form

$$(J, Q, P <, F_n)_{n < \omega} = (|J|, P^J, Q^J, <^J, F_n^J),$$

where $J = |J|$ is a set of cardinality λ, $<^J$ a linear order on $Q^J \subseteq J, P^J = |J| \setminus Q^J$, F_n^J a unary function, $F_n^J|Q^J = \text{the identity}$ and $a \in J \setminus Q^J$ implies $F_n^J(a) \not\in Q^J$, $n \neq m$ implies $F_n^J(a) \neq F_m^J(a)$, and for simplicity $a \neq b \in PM$ implies $\forall n < \omega \ F_n(a) \neq F_n(b)$; lastly, we add that $n < m$ implies $F_n^J(a) <^J F_m^J(a)$ (there is a small price). We stipulate F_0^J is the identity on $|J|$ and $I^J = (Q^J, <^J)$. We write $K^\oi_\lambda := \bigcup\{K^\oi_\lambda : \lambda \text{ a cardinal}\}$.

For a linear order I and $\mathcal{S} \subseteq \text{incr}_\omega(I)$ (cf. Definition 1.4), we let $J = J_{I,\mathcal{S}}$ be the derived member of K^\oi_λ which means: $|J| = I \cup \mathcal{S}, (Q^J|, <^J) = I, F_n^J(\eta) = \eta(n)$ for $n < \omega, F_n^J(t) = t$ for $t \in I$.

Finally, K^\oi_λ is the class of linear order of cardinality λ and $K^\or_\lambda = \bigcup\{K^\or_\lambda : \lambda \text{ a cardinal}\}$.

Definition 3.2. For a vocabulary τ_1 let $\Upsilon^\oi_{\tau_1}$ be the class of functions Φ with domain $\{\text{tp}_{qf}(\bar{t}, \emptyset, J) : \bar{t} \in \omega^{|J|}, J \in K^\oi_\lambda\}$ and if $q(x_0, \ldots, s_{m-1}) \in \text{Dom}(\Phi)$ then $\Phi(q)$ is a complete quantifier free n-type in $\mathcal{L}(\tau_1)$ with the natural compatibility functions.

Let $\Upsilon^\kappa_\tau = \{\Phi : \Phi \in \Upsilon^\oi_{\tau_1} \text{ for some vocabulary } \tau_1 \text{ of cardinality } \kappa\}$. For $\Phi \in \Upsilon^\oi_{\tau_1}$ let $\tau(\Phi) = \tau_\Phi$ be the vocabulary τ_1 such that $\Phi \in \Upsilon^\oi_{\tau_1}$.

For $\Phi \in \Upsilon^\kappa_\tau$ and $J \in K^\oi_\lambda$ let $\text{EM}(J, \Phi)$ be “the” τ_Φ-model M_1 generated by $\{a_t : t \in J\}$ such that

$$\text{tp}_{qf}(\langle a_{t_0}, \ldots, a_{t_{n-1}}, \emptyset, M_1\rangle) = \Phi(\text{tp}_{qf}(\langle t_0, \ldots, t_{n-1}, \emptyset, J\rangle))$$

for all $n < \omega$ and $\bar{t} \in \omega^J$. If $\tau \subseteq \tau_\Phi$ then $\text{EM}_\tau(J, \Phi)$ is the τ-reduct of $\text{EM}(J, \Phi)$.

In the above, we can replace K^\oi_λ by any class K of τ_κ-structures. For instance, for $K = K^\or_\lambda$, the class of linear orders, we get $\Upsilon^\or_{\tau_1}, \Upsilon^\or_{\kappa}$ and $\text{EM}(I, \Phi)$, $\text{EM}_\tau(I, \Phi)$; for $K = K^\omega$-tr, the class of trees with $\omega + 1$ levels (with a linear order on the successor of any member of level ω), we get Υ^ω-tr, Υ^ω-tr and $\text{EM}(I, \Phi), \text{EM}_\tau(I, \Phi)$.

The following definitions are from from [6, §3]; cf. [7, §1].
Definition 3.3. A (complete first order) T is \aleph_0-independent (or, not strongly dependent) if there is a sequence $\varphi_0 = \langle \varphi_n(x, y_n) : n < \omega \rangle$, of (first order) formulas\(^5\) such that T is consistent with Γ_λ for some (equivalently, every) $\lambda \geq \aleph_0$ where

$$\Gamma_\lambda = \{ \varphi_n(x_\eta, \bar{y}_n)\vert^{i(\alpha = \eta(n))} : \eta \in \omega, \alpha < \lambda, n < \omega \}.$$

A theory T is strongly stable if it is stable and strongly dependent.

Proposition 3.4. If T is a complete first order theory which is not strongly dependent, and $T_1 \supseteq T$ is another complete first order theory (without loss of generality with Skolem functions), then we can find \bar{a} such that $\varphi_0 = \langle \varphi_n(x, y_n) : n < \omega \rangle, y_n \leq y_{n+1}$ and $\varphi_n(x, y_n) \in \mathcal{L}(\mathcal{T}_T)$ for $n < \omega$ such that for any $\mathcal{J} \in K_{oi}$ we can find $M, \langle \bar{a}_t : t \in \mathcal{J} \rangle$ such that

- M is the Skolem hull of $\{ \bar{a}_t : t \in \mathcal{J} \}$,
- $\bar{a}_t \in \omega M$ for $t \in I^{\mathcal{J}}, \bar{a}_\eta = \langle a_\eta \rangle \in M_1$ for $\eta \in P^{\mathcal{J}}$,
- for $\eta \in P^{\mathcal{J}}, t \in Q^{\mathcal{J}}$ and $n < \omega$ we have $M \models \varphi_n[I, \bar{a}_t]$ if $F_n(\eta) = t$; (pedantically we should write $\varphi_n[a_\eta, \bar{a}_t] \models \varphi_n[I, \bar{a}_t]$),
- $\langle \bar{a}_t : t \in \mathcal{J} \rangle$ is indiscernible in M for the index model \mathcal{J},
- M is a model of T_1, and
- in fact (not actually used, cf. Definition 3.2) there is $\Phi \in \mathcal{Y}_{oi}^{\mathcal{T}_T}$ depending on T_1, φ only such that $M = EM(\mathcal{J}, \Phi)$, in fact if $n < \omega, t = \langle t_\ell : \ell < n \rangle \in I_\omega$ then $tp_f(\bar{a}_t) \models \Phi(\bar{a}_t, \mathcal{J})$.

Proof. Let $I = (Q^{\mathcal{J}}, <_\mathcal{J})$. By assumption (cf. Definition 3.3) there is a sequence $\langle \varphi_n(x, y_n) : n < \omega \rangle$. Let $k_n = \text{lh}(\bar{y}_n)$. Let I be an infinite linear order. Easily we can find $M_1 \models T_1$ and a sequence $\langle \bar{a}_t : t \in I \rangle$ with $\bar{a}_t \in \omega(M_1)$ such that for every $\eta \in \omega I$, the set $\{ \varphi_n(x, \bar{a}_t)\vert^{i(\eta(n) = t)} : t \in I, n < \omega \}$ is a type, i.e., finitely satisfiable in M_1.

Now by Ramsey’s theorem, without loss of generality, $\langle \bar{a}_t : t \in I \rangle$ is an indiscernible sequence in M_1. Without loss of generality M_1 is λ^+-saturated, we then expand M_1 to M_1^+ by function $F_n^{M_1^+}(n < \omega)$, (of finite arity) such that for $t_0 < \ldots <_\mathcal{J} t_{n-1}$ from $Q^{\mathcal{J}}$ the element $F_n(\bar{a}_t, \bar{a}_{t_1}, \ldots, \bar{a}_{t_{n-1}})$ or more exactly $F_n(\bar{a}_{t_0}, [\bar{a}_{t_1}] \cup \ldots \cup [\bar{a}_{t_{n-1}}] | k_{n-1})$ realizes in M_1 the type $\{ \varphi(x, \bar{a}_t)\vert^{i(\eta(n) = t)} : t \in I, \ell < n \}$. Let M_2^+ be an expansion of M_1 by Skolem functions such that $|\tau_{M_2^+}| = |T_1|$, (natural, though not strictly required). Without loss of generality $\langle \bar{a}_t : t \in I \rangle$ is an indiscernible sequence also in M_2^+.

\(^5\)We may use finite \bar{x} as usual. This does not matter by [7, 2.1].
Let D be a non-principal ultrafilter on ω and in $M_3^+ = (M_2^+)^\omega/D$, we let $\alpha_t = (\alpha_t(n) : n < \omega)/D$ for $t \in I$, and $\alpha_\eta = (F_n(\alpha_{\eta(0)}, \alpha_{\eta(1)}, \ldots, \alpha_{\eta(n-1)}) : n < \omega)/D$ for $\eta \in \text{incr}_\omega(I)$ and $\alpha_t = \alpha_\eta < F_n(t) : n < \omega >$ for $t \in P^J$.

Let M_4^+ be the submodel of M_3^+ generated by $\{\alpha_t : t \in J\}$ and M be $M_4^+|\tau(T_1)$. Now $M, \langle \alpha_t : t \in J \rangle$ are as required. Q.E.D.

Proposition 3.5. Assume $J_\ell \in K_{\text{oi}}$, and that M_ℓ, φ, T_1, and T are as in Proposition 3.4 for $\ell = 1, 2$. Suppose that the following holds:

If f is a function from J_1 (i.e., its universe) into $M|T_1|, S_0(J_2)$ (i.e., the free algebra generated by $\{x_t : t \in J_2\}$ in the vocabulary $\tau|T_1|, S_0 = \{F_n^\alpha : n < \omega \text{ and } \alpha < |T_1|\}$, F_n^α has arity n, cf. [15, III, §1] = [16]), we can find $t \in P^J_\ell, n < \omega$, and $s_1, s_2 \in Q^J_\ell$ and $k, \sigma, r_\ell^\ell (\ell = 1, 2 \text{ and } i < k)$, m, σ^* such that:

- $F_n^J_\ell(t) = s_1 \neq s_2,$
- for $\ell \in \{1, 2\}$ we have $f(s_\ell) = \sigma(r_\ell^\ell, \ldots, r_{\ell-1}^\ell)$ so $k < \omega, r_\ell^\ell \in J_2$ for $i < k$ and σ is a $\tau|T_1|, S_0$-term not dependent on ℓ,
- $f(t) = \sigma^*(r_0, \ldots, r_{m-1}), \sigma^*$ is a $\tau|T_1|, S_0$-term and $r_0, \ldots, r_{m-1} \in J_2$,
- the sequences $\langle r_1^i : i < k \rangle \lessdot \langle r_i : i < m \rangle$ and $\langle r_2^i : i < k \rangle \lessdot \langle r_i : i < m \rangle$ realize the same quantifier free type in J_2.\(^6\)

Then $M_1|\tau_T \nless M_2|\tau_T$.

Proof. Straightforward (or as in [15, Ch.III] = [16]). Q.E.D.

We could have replaced Q^J_ℓ by the disjoint union of $\langle Q_n^J \rangle : n < \omega$, where $<^J$ linearly orders each Q_n and $<^J = \bigcup \langle < Q_n^J \rangle : n < \omega \rangle$. In this case, use Q_n to index parameters for $\varphi_n(x, y_n))$. This plays no role in the present paper. For our present purpose, we can replace “not strongly stable” by a weaker demand. We present this briefly without detail. Recall (from [7, §5]) the following definition:

Definition 3.6. A (complete first order) theory T is **not strongly\(4) dependent** if there is a sequence $\varphi = \langle \varphi_n(x, y_n) : n < \omega \rangle$, (finite x of length $m < \omega$, as usual) of (first order) formulas from $L(\tau_T)$, an infinite linear order I, a sequence $\langle \alpha_\eta : \eta \in \text{incr}_{<\omega}(I) \rangle$ indiscernible in M with $\text{lh}(\alpha_\eta) \leq \omega$ and letting $B = \bigcup \langle \alpha_\eta : \eta \in \text{incr}_{<\omega}(I) \rangle$ for some $m < \omega$ and $p \in S^m(B, M)$.\(^6\)

\(^6\)We should close by the F^2's, but no need to iterate as F_ω^2 is the identity so quantifier free type mean the truth value of the inequalities $F_n^J(r') \neq F_n^J(r')$ (including F_ω^J) and the order between those terms.
for every $k < \omega$ there is $n < \omega$, satisfying: for no linear order I^+ extending I and subset I_0 of I^+ with $\leq k$ members, do we have:

if \bar{t}^1, \bar{t}^2 are increasing sequences from I of the same length n realizing the same quantifier free type over I_0 in I^+ and for $i = 1, 2$ we let $\bar{b}^i = (\ldots \langle \bar{a}_{\iota_{\eta}}(\ell) : \ell < \lh(\eta) \rangle \ldots)_{\eta \in \text{incr}_{<\omega}(n)}$ then $\ell < n \land u \subseteq (\otimes) \lh(\bar{b}^1) \land |u| = \lh(\bar{y}_\ell)$ implies $\varphi_{\ell}(x, \bar{b}^1\cup u) \in p \Leftrightarrow \varphi_{\ell}(x, \bar{b}^2\cup u) \in p$.

In the above, without loss of generality, $\bar{y}_n < \bar{y}_{n+1}$ for $n < \omega$. A theory T is strongly$_4$ stable if it is stable and strongly dependent.

We can write the condition in Definition 3.6 without I^+ speaking about finite sets as done in (\ast) in the proof of Proposition 3.7 below. We furthermore can get such $\langle \bar{a}_\rho : \rho \in \text{incr}_{<\omega}(I') \rangle$ for any infinite linear order I' by compactness.

Next we deduce a consequence of being non-strongly$_4$-dependent helpful in proving non-structure results.

Proposition 3.7. If $T_1 \supseteq T$ are complete first order theories, without loss of generality with Skolem functions and T is not strongly$_4$ dependent as witnessed by $\varphi = \langle \varphi_{\eta}(x, \bar{y}_\eta) : n < \omega \rangle$, i.e., as in Definition 3.6, then there is $\tau_1 \supseteq \tau_{T_1}$, $|\tau_1| = |T_1|$ and $\bar{\sigma}_n(\bar{z}_n) = \langle \sigma_{n, \ell}(\bar{z}_n) : \ell < \lh(\bar{\sigma}_n) \rangle, \sigma_{n, \ell}$ is a τ_1-term such that: if I, \mathcal{G} and $J = J_{I, \mathcal{G}}$ are as in Definition 3.1(2), then there are M_1 and $\langle \bar{a}_t : t \in I \rangle$ and $\langle \bar{a}_\eta : \eta \in \mathcal{G} \rangle$ such that:

$$\begin{align*}
(\alpha) & \ M_1 \ is \ a \ \tau_1 \text{-model and is the Skolem hull of } \{\bar{a}_t : t \in I\} \cup \{\bar{a}_\eta : \eta \in \mathcal{G}\} \\
\text{(we write } \bar{a}_t \text{ for } t \in \mathcal{G} \subseteq J \text{ for uniformity}), \\
(\beta) & \ \langle \bar{a}_t : t \in J \rangle \text{ is indiscernible in } M_1, \\
(\gamma) & \ \text{if } \eta \in \mathcal{G} \text{ and } k < \omega \text{ then for large enough } n(\ast), \text{ if } u \subseteq n(\ast), |u| \leq k, \text{ then we can find } \bar{s}, \bar{t} \text{ and } n_* < n(\ast) \text{ and } \bar{\sigma} \text{ such that} \\
- & \ \bar{s}, \bar{t} \text{ are sequences of members of } \{F^n_{n(\ast)}(\eta) : n < n(\ast)\}, \\
- & \ \lh(\bar{s}) = \lh(\bar{t}) \leq n(\ast), \\
- & \ s_i <_I s_j \Leftrightarrow t_i <_I t_j \text{ for } i, j < \lh(\bar{s}), \\
- & \ \text{if } i < \lh(\bar{s}) = \lh(\bar{t}) \text{ then } (\forall n \in u)(F^n_{n(\ast)}(\eta) \leq_I s_i \equiv F^n_{n(\ast)}(\eta) \leq_I t_i), \\
- & \ \bar{\sigma} = \langle \sigma_i(\bar{y}) : i < \lh(\bar{y}_{n*}) \rangle, \sigma_i \text{ a } \tau_1 \text{-term}, \\
- & \ M_1 \models \varphi_{\sigma}(\bar{a}_{n*}, \ldots, \sigma_{M_1}^i(\bar{a}_{t_0}, \bar{a}_{t_1}, \ldots), \ldots : i < \lh(\bar{y}_{n*}) \equiv \neg \varphi_{\sigma}(\bar{a}_{n*}, \ldots, \\
& \quad \sigma_{M_1}^i(\bar{a}_{s_0}, \bar{a}_{s_1}, \ldots), \ldots : i < \lh(\bar{y}_{n*})), \\
(\delta) & \ M_1 \ is \ a \ model \ of \ T_1 \text{ so } \tau_{M_1} \supseteq \tau_{T_1}.
\end{align*}$$
Proof. Fix I, \mathcal{S}; without loss of generality, I is dense with neither first nor last element and is \aleph_1-homogeneous hence there are infinite increasing sequences of members of \aleph_0.

Let $I, \langle \varphi_n(x, y_n) : n < \omega \rangle, \{ \bar{a}_\eta : \eta \in \text{incr}_{<\omega}(I) \}$ and $p \in S^m(\bigcup \{ \bar{a}_\eta : \eta \in \text{incr}_{<\omega}(I) \})$ exemplify T is not strongly dependent, i.e., be as in the Definition so $m = \text{lh}(\bar{x})$. For notational simplicity (and even without loss of generality, by [7, §5]) assume $m = 1$.

Now in Definition 3.6 we can add (by compactness) that there is a sequence $\langle (n_k, m_k, I^*_k) : k < \omega \rangle$ such that $k < n_k < m_k, m_k < m_{k+1}, I^*_k \subseteq I$ has m_k members, for no $I_0 \subseteq I^*_k$ with $\leq k$ members does (\otimes) from Definition 3.6 hold for $t^1, t^2 \in \text{incr}_{<n_k}(I^*_k)$ and (k, n_k) here standing for k, n.

Without loss of generality, I is the reduct to the vocabulary $\{<\}$, i.e., to just a linear order of an ordered field \mathbb{F} and $t_q \in \mathbb{F}$ for $q \in \mathbb{Q}$ are such that $0 <_\mathbb{F} t_q, (t^1_q)^2 <_\mathbb{F} t^2_q$ for $q_1 <_\mathbb{F} q_2$ (hence $n < \omega \Rightarrow n <_\mathbb{F} t^1_n <_\mathbb{F} t^2_n$). By easy manipulation, without loss of generality, $I^*_k = \{ t_i : i = 0, 1, \ldots, m_k \}$.

Now for each $m < \omega$ and $\eta \in \text{incr}_m(I)$ we can choose c_η such that if $m = m_k$ then for some automorphism h of I mapping I^*_k onto $\text{Rang}(\eta)$, letting \bar{h} be an automorphism of M_1 mapping \bar{a}_ν to $\bar{a}_{h(\nu)}$ for $\nu \in \text{incr}_{<\omega}(I)$, the element c_η realizes $\bar{h}(p)$ and $\langle c_\eta : \eta \in \text{incr}_{<\omega}(I) \rangle$ is without repetitions.

Now, without loss of generality, $\langle \langle c_\eta \rangle \rangle \bar{a}_\eta : \eta \in \text{incr}_{<\omega}(I) \rangle$ is an indiscernible sequence and let $a_t = c_{<\omega^2}$ be such that M_0 be a model of T_1 satisfying $\bigcup \{ \langle c_\eta \rangle \bar{a}_\eta : \eta \in \text{incr}_{<\omega}(I) \} \subseteq M_0[\tau \prec \mathcal{C}]$. Without loss of generality $\langle \langle c_\eta \rangle \rangle \bar{a}_\eta : \eta \in \text{incr}_{<\omega}(I) \rangle$ is indiscernible in M_0 and we can find an expansion M_1 of M_0 such that $|\tau_{M_1}| = |T_1|$,

$$\bar{a}_\eta = (F_{\text{lh}(\bar{a})}, i)(\bar{a}_{\eta(0)}, \ldots, \bar{a}_{\eta(n-1)}) : i < \text{lh}(\bar{a}_\eta),$$

and $c_\eta = F_{\text{lh}(\bar{a})}(\bar{a}_{\eta(0)}, \ldots, \bar{a}_{\eta(n-1)})$ if $\eta \in \text{incr}_n(I)$, and M_1 has Skolem functions.

By manipulating I, without loss of generality, we can find $I_* \subseteq I$ of order type ω. So for some $H_n \in \tau_1$ for $n < \omega$, if $t_0 < t_1 < \ldots$ list I_*, for every $k < \omega$ large enough, for every $u \subseteq n(*)$ satisfying $|u| \leq k$ for every n large enough $H_n^M(\bar{a}_{t_0}, \bar{a}_{t_1}, \ldots, \bar{a}_{t_{n-1}})$ satisfies the demand (on the singleton \bar{a}_η from clause (γ) in the claim).

Let D be a non-principal ultrafilter on ω such that $\{ m_k : k < \omega \} \in D$, let M_2 be isomorphic to M_1^ω/D over M_1, i.e., $M_1 \prec M_2$ and there is an isomorphism f from M_2 onto M_1^ω/D extending the canonical embedding. If η is an increasing ω-sequence of members of I, we let $a_\eta^n = H_n^M(\bar{a}_{\eta(0)}, \ldots, \bar{a}_{\eta(n-1)}) \in M_1$ and let $a_\eta = f^{-1}(\langle a_\eta^0, a_\eta^1, \ldots, a_\eta^n, \ldots : n < \omega \rangle/D) \in M_2$.

Let M_2' be the Skolem hull of $\{\bar{a}_t : t \in I\} \cup \{a_\eta : \eta \in \mathcal{S}\}$ inside M_2. It is easy to check that it is as required. \hfill \text{Q.E.D.}

It is helpful to have a sufficient condition for the non-isomorphism of two such models:

Proposition 3.8. Assume $J_\ell \in K^{oi}$, and $M_\ell, \bar{\varphi}, T_1, T$ as in Proposition 3.7 for $\ell = 1, 2$. Suppose that the following holds: if f is a function from J_1 (i.e., its universe) into $M_{|T_1|, \mathcal{S}_0}(J_2)$ (i.e., the free algebra generated by $\{x_t : t \in J_1\}$ the vocabulary $\tau_{|T_1|, \mathcal{S}_0} = \{F_n^m : n < \omega$ and $\alpha < |T_1|\}$, F_n^m has arity n, we can find $t \in P^{J_1}$ and $k_* < \omega$ such that for every $n_* < \omega$ we can find \bar{s}_1, \bar{s}_2 such that

- $\bar{s}_1, \bar{s}_2 \in kI$ are increasing, $\bar{s}_1 = \langle F_n^J(t) : n < n_*\rangle$ and $n < k_* \Rightarrow s_{2,n} = s_{1,n}$ and $s_{1,n+1} < s_{2,n}$,
- $f(\bar{s}_\ell) = \sigma(r_1^\ell, \ldots, r_{k-1}^\ell)$ so $k < \omega, r_i^\ell \in J_2$ for $i < k$ so σ is a $\tau_{|T_1|, \mathcal{S}_0}$-term not dependent on ℓ,
- $f(t) = \sigma^*(r_0, \ldots, r_{m-1})$, σ^* is a $\tau_{|T_1|, \mathcal{S}_0}$-term and $r_0, \ldots, r_{m-1} \in J_2$,
- the sequences $\langle r_i^1 : i < k\rangle \dashv \langle r_i : i < m\rangle$ and $\langle r_i^2 : i < k\rangle \dashv \langle r_i : i < m\rangle$ realize the same quantifier free type in J_2 (note: we should close by the F_n^J, so type mean the truth value of the inequalities $F_{n_1}(r') \neq F_{n_2}(r')$ (including F_ω) and the order between those terms).

Then $M_1 \not\cong M_2$.

Proof. As in [10, III] or better in [15, III] = [16], called unembeddability. \hfill \text{Q.E.D.}

4 Forcing EF$^+$-equivalent Consistency non-isomorphic models

The following result is not optimal, but it is enough to prove necessary conditions on T for being lean and even on $(T, *)$. As for unstable T, cf. below in §5.

Theorem 4.1. Assume $(\bar{\varphi}, T, T_1, \Phi)$ is as in Proposition 3.4, T stable and $\lambda = \lambda^{<\lambda} \geq \aleph_1 + |T_1|$ and $\mu = \lambda^+ > \lambda$. Then for some λ-complete λ^+-c.c. forcing notion \mathbb{Q} we have that $\models_{\mathbb{Q}}$ “there are models M_1, M_2 of T of cardinality λ^+ such that $M_1|\tau(T), M_2|\tau(T)$ are EF$^+_{\alpha, \lambda, \lambda^+}$-equivalent for every $\alpha < \lambda$ but are not isomorphic”.

We expect that we can improve Theorem 4.1 by allowing $\alpha < \lambda^+$ and replacing forcing by assuming, e.g., $2^\lambda = \lambda^+, \lambda = \lambda^{<\lambda}$. We shall continue this line of research in [12].
Proof. We define a partial order \(Q \). A condition \(p \) is in \(Q \) if it consists of the following objects satisfying the following conditions:

(a) \(u = u^p \in [\mu]^{< \lambda} \) such that if \(\alpha + i \in u \) and \(i < \lambda \), then \(\alpha \in u \);

(b) \(<^p \) a linear order of \(u \) such that if \(\alpha, \beta \in u \) and \(\alpha + \lambda \leq \beta \), then \(\alpha <^p \beta \);

(c) for \(\ell = 1, 2 \), \(\mathcal{G}^p_\ell \) is a subset of \(\{ \eta \in \omega^u : \eta(n) + \lambda \leq \eta(n+1) \text{ for } n < \omega \} \) such that \(\eta \neq \nu \in \mathcal{G}^p_\ell \Rightarrow \text{Rang}(\eta) \cap \text{Rang}(\nu) \) is finite; note that in particular \(\eta \in \mathcal{G}^p_\ell \) is without repetitions and is \(<^p \)-increasing;

(d) \(\Lambda^p \) a set of \(< \lambda \) increasing sequences of ordinals from \(\{ \alpha \in u^p : \lambda|\alpha \} \) hence of length \(< \lambda \);

(e) \(\bar{f}^p = (f^p_\rho : \rho \in \Lambda^p) \) such that

1. \(f^p_\rho \) is a partial automorphism of the linear order \((u^p, <^p) \) such that \(\alpha \in \text{Dom}(f^p_\rho) \Rightarrow \alpha + \lambda = f^p_\rho(\alpha) + \lambda \) and we let \(f^{1,p}_\rho = f^p_\rho, f^{2,p}_\rho = (f^p_\rho)^{-1} \);

2. if \(\eta \in \mathcal{G}^p_\ell, \rho \in \Lambda^p, \ell \in \{1, 2\} \) then \(\text{Rang}(\eta) \) is included in \(\text{Dom}(f^{\ell,p}_\rho) \) or is almost disjoint to it (i.e., except finitely many “errors”);

3. if \(\rho < \varrho \in \Lambda^p \) then \(\rho \in \Lambda^p \) and \(f^p_\rho \subseteq f^p_\varrho \)

4. \(f^{\ell,p}_\varnothing \) is the empty function and if \(\rho \in \Lambda^p \) has limit length then \(f^p_\rho = \cup\{ f^{p,i}_\rho : i < \text{lh}(\rho) \} \).

5. if \(\rho \in \Lambda^p \) has length \(i + 1 \) then \(\text{Dom}(f^{\ell,p}_\rho) \subseteq \rho(i) \) for \(\ell = 1, 2 \);

6. if \(\rho \in \Lambda^p \) and \(\eta \in \omega(\text{Dom}(f^{p}_\rho)) \) then \(\eta \in \mathcal{G}^p_1 \Leftrightarrow (f^p_\rho(\eta(n)) : n < \omega) \in \mathcal{G}^p_2 \);

7. if \(\rho_n \in \Lambda^p \) for \(n < \omega \) and \(\rho_n < \rho_{n+1} \) and \(\lambda > \aleph_0 \) then \(\bigcup\{ \rho_n : n < \omega \} \in \Lambda \).

We now define the order \(\leq = \leq_Q \) on \(Q \). We fix \(p, q \in Q \) and let \(p \leq q \) if

\(u^p \subseteq u^q, u^p = u^q \Rightarrow \mathcal{G}^p_\ell \subseteq \mathcal{G}^q_\ell \) (for \(\ell = 1, 2 \)), \(\Lambda^p \subseteq \Lambda^q \), and the following conditions hold:

(a) if \(\rho \in \Lambda^p \) then \(f^p_\rho \subseteq f^q_\rho \);

(b) if \(\eta \in \mathcal{G}^q_\ell \setminus \mathcal{G}^p_\ell \) then \(\text{Rang}(\eta) \cap u^p \) is finite;

(c) if \(\rho \in \Lambda^p \) and \(f^p_\rho \neq f^q_\rho \) then \(u^p \cap \sup \text{Rang}(\rho) \subseteq \text{Dom}(f^{\ell,q}_\rho) \) for \(\ell = 1, 2 \); and

(d) if \(\rho \in \Lambda^p \) and \(\ell \in \{1, 2\}, \alpha \in u^p \setminus \text{Dom}(f^{\ell,p}_\rho) \) and \(\alpha \in \text{Dom}(f^{\ell,q}_\rho) \) then \(f^{\ell,p}_\rho(\alpha) \notin u^p \).
Having defined the forcing notion Q, we can now start to investigate it. We obviously have that Q is a partial order of cardinality $\mu^{<\lambda} = \lambda^+$.

Claim 4.2. If $\bar{\rho} = \langle p_i : i < \delta \rangle$ is $\leq Q$-increasing, δ a limit ordinal $< \lambda$ of uncountable cofinality then $p_\delta := \bigcup\{p_i : i < \delta\}$ defined naturally is an upper bound of $\bar{\rho}$.

Proof. Think about it, or consider the proof of Claim 4.3. The case $\text{cf}(\delta) > \aleph_0$ is easier because of clauses (e4) and (e7). Q.E.D.

Claim 4.3. If $\delta < \lambda$ is a limit ordinal of cofinality \aleph_0 and the sequence $\bar{\rho} = \langle p_i : i < \delta \rangle$ is increasing (in Q), then it has an upper bound.

Proof. We define $p_\delta \in Q$ as follows: $u^{p_\delta} = \bigcup\{u^{p_i} : i < \delta\}$, $\leq^{p_\delta} = \bigcup\{\leq^{p_i} : i < \delta\}$, $\Lambda^{p_\delta} = \bigcup\{\Lambda^{p_i} : i < \delta\} \cup \{\rho : \rho$ is an increasing sequence of ordinals from u^{p_δ} of length a limit ordinal of cofinality \aleph_0 such that $\rho|\varepsilon \in \{\Lambda^{p_i} : i < \delta\}\}$ for all $\varepsilon < \text{lh}(\rho)$.

Let $\bar{f}^{p_\delta} = \langle f^{p_\delta}_\rho : \rho \in A^0 \rangle$ be such that if $i < \delta$ and $\rho \in \Lambda^{p_i}\setminus\bigcup\{\Lambda^{p_j} : j < i\}$, then $f^{p_\delta}_\rho = \bigcup\{f^{p_j}_\rho : j \in [i, \delta)\}$ and if $\rho \in \Lambda^{p_i}\setminus\bigcup\{\Lambda^{p_j} : j < i\}$ then $f^{p_\delta}_\rho = \bigcup\{f^{p_j}_\rho : \varepsilon < \text{lh}(\rho)\}$ is well defined as $\varepsilon < \text{lh}(\rho) \Rightarrow \rho^\langle \varepsilon \rangle \in \{\Lambda^{p_j} : j < \delta\}$. Clearly clauses (a), (b), (d), (e1), (e3), (e4), (e5), and (e7) for $p_\delta \in Q$ hold.

Lastly, let $S^{p_\delta}_\ell = \{S^{p_\delta}_\ell^\alpha : \alpha < \delta\}$ for $\ell = 1, 2$.

Subclaim 4.4. If $\rho \in \Lambda^{p_\delta}\setminus\bigcup\{\Lambda^{p_\alpha} : \alpha < \delta\}$ then $\text{Dom}(f^{p_\delta}_\rho) = u^{p_\delta} \cap \sup \text{Rang}(\rho) = \text{Rang}(f^{p_\delta}_\rho)$ and for every $\alpha < \delta$ for some $\beta < \delta$ we have $f^{p_\delta}_\rho|u^{p_\alpha} \subseteq f^{p_\beta}_\rho|u^{p_\alpha}$ for some $i < \text{lh}(\rho)$.

Proof. Clearly, $\text{cf}(\text{lh}(\rho)) = \aleph_0$. Assume $\alpha < \delta$ and $i < \text{lh}(\rho)$. Clearly for some $\beta \in [\alpha, \delta)$ we have $\rho|i \in \Lambda^{p_\beta}$. Also the set $\{j < \text{lh}(\rho) : \rho|j \in \Lambda^{p_\beta}\}$ is an initial segment of $\text{lh}(\rho)$ and cannot be $\text{lh}(\rho)$ because $\rho \notin \Lambda^{p_\beta}$ by clause (e7) of the definition of Q. So for some $j < \text{lh}(\rho)$ we have $\rho|j \notin \Lambda^{p_\beta}$ but by the choice of ρ for some $\gamma < \delta$ we have $\rho|j \in \Lambda^{p_\gamma}$, so necessarily $\beta < \gamma$. As $p_\alpha \leq Q p_\beta \leq Q p_\gamma$, by clause (e) of the definition of $\leq Q$, as $\rho|i \in \Lambda^{p_\gamma}\setminus\Lambda^{p_\beta}$ we know that $u^{p_\beta} \cap \sup \text{Rang}(\rho|i)$ is included in $\text{Dom}(f^{p_\beta}_{\rho|i_\alpha})$ for $\ell = 1, 2$.

As this holds for any $\alpha < \delta$ and $i < \text{lh}(\rho)$ and $u^{p_\delta} \cap \sup \text{Rang}(\rho|i) = \bigcup\{u^{p_\alpha} \cap \sup \text{Rang}(\rho) : \alpha < \delta\}$ it follows that for $\ell = 1, 2$ we have that $\varepsilon \in u^{p_\delta} \cap \sup \text{Rang}(\rho)$ implies $\langle 2\alpha < \delta, \varepsilon \in u^{p_\alpha} \cap \sup \text{Rang}(\rho)\rangle$. That implies $\langle \exists \beta < \delta, \varepsilon \in \text{Dom}(f^{p_\ell}_{\rho|i})\rangle$, and this finally implies $\varepsilon \in \text{Dom}(f^{p_\ell}_{\rho|i})$, so are done. Q.E.D.

Subclaim 4.5. If $\rho \in \{\Lambda^{p_\alpha} : \alpha < \delta\}$ then exactly one of the following occurs:
(a) There is a unique \(\alpha = \alpha(\rho) < \delta \) such that \(\rho \in \Lambda^\alpha, (\forall \beta)(\alpha \leq \beta < \delta \Rightarrow f^{p_\alpha}_\rho = f^{p_\beta}_\rho) \) and \((\forall \beta < \alpha)(\rho \in \Lambda^\beta \rightarrow f^{p_\beta}_\rho \neq f^{p_\alpha}_\rho) \).

(b) \(\text{Dom}(f^{p_\delta}_\rho) = u^{p_\delta} \cap \text{sup Rang}(\rho) = \text{Rang}(f^{p_\delta}_\rho) \) and \((\forall \alpha < \delta)(\exists \beta < \delta)(f^{p_\delta}_\rho \mid u^{p_\alpha} \subseteq f^{p_\beta}_\rho) \).

Proof. Similar to the proof of Subclaim 4.4. \(\text{q.e.d.} \)

In order to finish the proof of \(p_\delta \in Q \), it remains to check clauses (c), (e2), and (e6).

Clause (c). Obvious by the choice of \(S^p \).

Clause (e2). So let \(\eta \in S^p \), \(\rho \in \Lambda^p \) where \(\ell \in \{1, 2\} \) and we should prove that \(\text{Rang}(\eta) \subseteq \text{Dom}(f^{L, p_\delta}) \) or \(\text{Rang}(\eta) \cap \text{Dom}(f^{L, p}) \) is finite. For some \(\alpha < \delta \) we have \(\eta \in S^{p_\delta} \). If \(\rho \in \bigcup\{\Lambda^p : \beta < \delta\} \) then we apply Subclaim 4.5, now if clause (a) there holds so \(\alpha = \alpha(\rho) < \delta \) is well defined and we use \(p_\alpha \in Q \) and if clause (b) there holds then trivially \(\text{Rang}(\eta) \subseteq u^{p_\delta} \subseteq \text{Dom}(f^{L, p_\delta}_\rho) \) so assume \(\rho \in \Lambda^p \setminus \bigcup\{\Lambda^p : \beta < \delta\} \).

By Subclaim 4.4 we finish as in the case if (b) from Subclaim 4.5 holds.

Clause (e6). By the choice of \(S^p \) and the proof of clause (e2).

We now have to check that for \(\alpha < \delta \), the pair \((p_\alpha, p_\delta)\) satisfies the definition of \(\leq Q \) which is straightforward. \(\text{q.e.d.} \) (Claim 4.3)

Claim 4.6. If \(\alpha < \mu \) then \(T^1_\alpha := \{p \in Q : \alpha \in u^p\} \) is dense and open as well as \(T_\alpha = \{p \in Q : \text{if } \delta \in u^p, \lambda|\delta \text{ and } cf(\delta) < \lambda \text{ then } \delta = \sup(\delta \cap u)\} \).

Proof. The proof is straightforward. For the claim about \(T^1_\alpha \), given \(p \in Q \) we define \(q \in Q \) by \(u^q := \bigcup\{\beta \leq \alpha : \beta + \lambda = \alpha + \lambda\}, \alpha_1 < \alpha_2 \iff \alpha_1 <^p \alpha_2 \) or \(\alpha_1 < \alpha_2 \land \{\alpha_1, \alpha_2\} \not\subseteq u^\ell \land \{\alpha_1, \alpha_2\} \subseteq u^q \), \(S^q_\ell = S^p_\ell \) for \(\ell = 1, 2 \), \(\Lambda^q = \Lambda^p \), and \(f^p_\rho = f^p_\rho \) for \(\rho \in \Lambda^q \). Now check. For the second claim about \(T_\alpha \) use the first part and Claim 4.3. \(\text{q.e.d.} \)

Claim 4.7. If \(\rho \in \Lambda^* := \{\rho : \rho \text{ is an increasing sequence of ordinals } < \lambda^+ \text{ divisible by } \lambda \text{ of length } < \lambda\} \) then \(T^2_\rho := \{p \in Q : \rho \in \Lambda^p\} \) is dense open.

Proof. Let \(p \in Q \), by Claims 4.6 and 4.3 there is \(q \geq p \) (from \(Q \)) such that \(\text{Rang}(\rho) \subseteq u^q \). If \(\rho \in \Lambda^q \) we are done, otherwise define \(q' \) as follows: \(u^{q'} = u^q, <^q = <^q, S^{q'}_\ell = S^{q'_p}, \Lambda^{q'} = \Lambda^q \cup \{\rho \mid \varepsilon : \varepsilon \leq \text{lh}(\rho)\} \) and if \(i \leq \text{lh}(\rho), \rho|i \notin \Lambda^q \) then we let \(f^{q'}_\rho = \bigcup\{f^{p_\rho}_\rho : \rho \in \Lambda^q \text{ and } \rho < \rho|i\} \). We should check all the clauses in the definition of \(Q \) and, e.g., clause (e6) holds because \(q \) satisfies clause (e7). Then we should check all the clauses of “\(q \leq Q q' \)” \(\text{q.e.d.} \).
Claim 4.8. If \(q \) is as in Claim 4.9 and \(\alpha < \lambda^+ \) and \(\ell \in \{1, 2\} \) then

\[
T_{\nu, \alpha, \ell}^3 = \{p \in Q : \alpha \in \text{Dom}(f_{\nu}^{\ell, p}) \text{ so } q \in \Lambda^\nu, \alpha \in u^p\} \text{ is dense open.}
\]

Proof. By Claims 4.6 and 4.7. Q.E.D.

Claim 4.9. If \(p \in Q \) and \(q \in \Lambda^\nu \) then for some \(q \) we have \(p \leq Q q \wedge f_{\nu}^{\ell} \neq f_{\nu}^{\ell} \bigland \{\alpha + \lambda : \alpha \in u^p\} = \{\alpha + \lambda : \alpha \in u^p\}\).

Proof. For each \(\delta \in u \cup \text{sup Rang}(q) \) divisible by \(\lambda \) let \(u_\delta = u \cap [\delta, \delta + \lambda) \). So \(g_\delta := f_{\nu}^{\ell} \vert u_\delta \) is a partial function from \(u_\delta \) into \(u_\delta \) and \(f_{\nu}^{\ell} = \bigcup \{g_\delta : \delta \text{ as above}\} \). Now, for \(\delta \) as above we can find \(f_\delta \) such that \(f_\delta \) is a one-to-one function, \(g_\delta = f_{\nu}^{\ell} \vert u_\delta \subseteq f_\delta \), \(\alpha \in \text{Dom}(f_\delta) \) iff \(\alpha \in u_\delta \vee f_\delta(\alpha) \in u_\delta \), \(\text{Dom}(f_\delta) \setminus u_\delta \) is an initial segment \([\alpha^\delta_2, \alpha^\delta_3) \) of \([\delta, \delta + \lambda) \setminus u_\delta \), \(\text{Rang}(f_\delta) \setminus u \) is an initial segment \([\alpha^\delta_3, \alpha^\delta_3) \) of \([\delta, \delta + \lambda) \setminus \text{Dom}(f_\delta) \), \(f_\delta \) maps \([\alpha^\delta_3, \alpha^\delta_3) \) onto \(u_\delta \setminus \text{Rang}(f_{\nu}^{\ell} \cup u_\delta) \), and \(f_\delta \) maps \(u_\delta \setminus \text{Dom}(f_{\nu}^{\ell} \cup u_\delta) \) onto \([\alpha^\delta, \alpha^\delta_3) \). Now we can find a linear order \(<_1 \) on \(u_\delta \cup [\alpha^\delta_3, \alpha^\delta_3) \) such that \(f_\delta \) is order preserving (as the class of linear orders has amalgamation).

Lastly, we define \(q \) by \(u^q = u^p \cup \{[\alpha^\delta_3, \alpha^\delta_3) : \delta \text{ as above}\} \), \(\alpha <^q \beta \) iff \((\exists \delta)(\alpha <_\delta \beta) \) or \(\alpha + \lambda \leq \beta \), \(\Lambda^q = \Lambda^p \), and \(\mathcal{S}_\ell^q = \mathcal{S}_\ell^p \cup \{(f_{\nu}^{\ell, q}(\eta(n)) : n < \omega) : \ell \in \{1, 2\}, \rho \in \Lambda^\nu \text{ and } \eta \in \mathcal{S}_{3-\ell}^\nu \} \).

Now we have to check that \(q \in Q \). This is straightforward; e.g. for clause (c), assume \(\eta \neq \nu \in \mathcal{S}_\ell^q \) and we have to prove that \(\text{Rang}(\eta) \cap \text{Rang}(\nu) \) is finite.

Now we have four cases: first \(\eta, \nu \in \mathcal{S}_\ell^p \), so use clause (c) for \(\ell \). Second, \(\eta, \nu \in \mathcal{S}_\ell^q \setminus \mathcal{S}_\ell^p \), so \(\eta, \nu \) are images by \(f_{\nu}^{\ell, q} \) of members of \(\mathcal{S}_{3-\ell}^\nu \), as this function is one-to-one, this follows from \(p, \mathcal{S}_{3-\ell}^\nu \) satisfying clause (c). Third, \(\eta \in \mathcal{S}_\ell^q \wedge \nu \in \mathcal{S}_\ell^p \setminus \mathcal{S}_\ell^q \), then \(\nu = (f_{\nu}^{\ell, q}(\eta(n)) : n < \omega) \) for some \(\nu' \in \mathcal{S}_{3-\ell}^\nu \) satisfying \(\text{Rang}(\nu') \notin \text{Dom}(f_{\nu}^{\ell, q}) \), hence for some \(n, n \in [n, \omega) \Rightarrow n \notin \text{Dom}(f_{\nu}^{\ell, q}) \Rightarrow \nu(n) \notin u^p \) but \(\text{Rang}(\eta) \subseteq u^p \) so we are done. Fourth, \(\eta \in \mathcal{S}_\ell^q \setminus \mathcal{S}_\ell^p \wedge \nu \in \mathcal{S}_\ell^p \) the proof is dual. The proof of clause (e2) is similar.

Also we have to check that \(p \leq Q q \). This is straightforward, clause (b) is proved as in the proof of (c) of the definition of \(Q \) above and clause (d) holds by our choice of the \(f_{\nu}^{\ell}'s \). Now check that \(q \) as required. Q.E.D.

Let \(Q^+ = \{p \in Q : if \ell \in \{1, 2\} and \rho \in \Lambda^\nu then \text{Dom}(f_{\nu}^{\ell, p}) = u^p \cap \text{sup Rang}(\rho)\} \).

Claim 4.10. \(Q^+ \) is a dense subset of \(Q \), moreover \((\forall p \in Q)(\exists q \in Q^+)(p \leq q \wedge \bigland[\{\alpha + \lambda : \alpha \in u^q\} = \bigcup[\{\alpha + \lambda : \alpha \in u^p\}] \).

Proof. Let \(p \in Q, \kappa = \vert \Lambda \vert, \delta = \kappa \times \kappa \) and \(\{\rho_i : i < i_\ast < \lambda\} \) list \(\Lambda^\nu \) each appearing unboundedly often. We choose \(p_i \) by induction on \(i \leq \delta \) such that \(p_i \in Q, j < i \) implies \(p_i \leq Q p_j, p_0 = p, \Lambda^{p_i} = \Lambda, f_{\rho_i}^{p_i, q} \neq f_{\rho_i}^{p_i, q} \), and
\[\bigcup \{ \alpha + \lambda : \alpha \in u^p \} = \bigcup \{ \alpha + \lambda : \alpha \in u^P \}. \] For \(i = 0 \), use \(p_0 = p \); for \(i \) limit, use Claim 4.3; for \(i = j + 1 \), use Claim 4.9. Now \(p_\delta \) is as required. \ q.e.d.

Claim 4.11. For \(p \in Q \) and \(\delta < \lambda^+ \) divisible by \(\lambda, p|\delta \) is naturally defined, belongs to \(Q \) and \(u^p \subseteq \delta \) implies \(p|\delta = p \) and \(p|\delta \leq Q p \), where \(q = p|\delta \) be defined by \(u^q = u^p \cap \delta, <^q = <^p \mid \delta, \mathcal{G}_\ell^q = \{ \eta \in \mathcal{G}_\ell^p : \text{Rang}(\eta) \subseteq \delta \} \), \(\Lambda^q = \{ \rho \in \Lambda^p : \text{sup } \text{Rang}(\rho) \leq \delta \} \), and \(\bar{f}^q = \{ f_\rho^q : \rho \in \Lambda^q \} \) where \(f_\rho^q = f_\rho^p \).

Proof. Why? Check. \ q.e.d.

Claim 4.12. If \(\delta < \lambda^+ \) is divisible by \(\lambda, p \in Q^+ \) and \((p|\delta) \leq Q q \in Q^+ \) but \(u^q \subseteq \delta \) then \(p, q \) are compatible in \(Q \), moreover has a common upper bound \(r = p + q \) such that \(r|\delta = q \land u^r = u^p \cup u^q \).

Proof. Note that if \(\rho \in \Lambda^p \cap \Lambda^q \) then sup \(\text{Rang}(\rho) \leq \delta \) by clauses (e4) and (e5) of the definition of \(Q \); also \(\Lambda^p \cap \Lambda^q = \Lambda^p \cap \delta \). We define \(r \) by \(u^r = u^p \cup u^q \), for \(\alpha, \beta \in u^r \) we have \(\alpha <^2 \beta \) iff \(\alpha + \beta \leq \beta \) or \(\alpha <^q \beta \) or \(\alpha <^p \beta \), \(\mathcal{G}_\ell^r \) is \(\mathcal{G}_\ell^p \cup \mathcal{G}_\ell^q \) for \(\ell = 1, 2, \Lambda^r = \Lambda^p \cup \Lambda^q \), and \(\bar{f}^r = \{ f_\rho^r : \rho \in \Lambda^r \} \) where

\[
f_\rho^r := \begin{cases} \{ f_\rho^p \cup \bigcup \{ f_\rho^q_i : i \leq \text{lh}(\rho) \} & \text{if } \rho \in \Lambda^q \\ f_\rho^p & \text{if } \rho \in \Lambda^p \setminus \Lambda^q. \end{cases}
\]

Why is \(r \in Q^+ \)? We should check all the clauses in the definition which are easy. E.g., in clause (c), \(\eta \neq \nu \in \mathcal{G}_\ell^r \Rightarrow \aleph_0 > |\text{Rang}(\eta) \cap \text{Rang}(\nu)| \), the only new case is \(\eta \in \mathcal{G}_\ell^p \Leftrightarrow \nu \notin \mathcal{G}_\ell^p \) so, without loss of generality, \(\eta \in \mathcal{G}_\ell^p \setminus \mathcal{G}_\ell^q \land \nu \in \mathcal{G}_\ell^q \), hence \(\text{sup}(\eta) > \delta \) hence \(\text{Rang}(\eta) \cap \delta \) is finite but \(\text{Rang}(\nu) \subseteq u^q \subseteq \delta \).

Also clauses (e2) and (e6) should be checked only when \(f_\rho^r \) is new so necessarily \(\rho \in \Lambda^p \) so \(f_\rho^r = f_\rho^p \cup \bigcup \{ f_\rho^q_i : i \in \Lambda^q \} \), but recalling that any \(\eta \in \mathcal{G}_\ell^r \) is an increasing \(\omega \)-sequence, clearly if \(\text{sup } \text{Rang}(\eta) > \delta \) we use “p satisfies clauses (e2) and (e6)” and if sup \(\text{Rang}(\eta) \leq \delta \) we use “q satisfies clauses (e2), (e6), and (e7)”.

Why do \(p \leq Q r \) and \(p \leq Q q \) hold? We should check all the clauses in the definition of \(\leq Q \) for both pairs. They are easy, e.g., clause (b) holds because if \(\eta \in \mathcal{G}_\ell^r \setminus \mathcal{G}_\ell^q \) then \(\eta \in \mathcal{G}_\ell^p \setminus \mathcal{G}_\ell^q \) hence sup \(\text{Rang}(\eta) > \delta \) and it should be clear; if \(\eta \in \mathcal{G}_\ell^p \setminus \mathcal{G}_\ell^q \) then \(\eta \in \mathcal{G}_\ell^p \setminus \mathcal{G}_\ell^q \) and we can use \(p|\delta \leq Q q \), i.e., clause (b) for this pair.

Concerning clause (c) for \(p \leq Q r \), recall that \(p, q \in Q^+ \) so if \(\ell \in \{1, 2\} \) and \(\rho \in \Lambda^p \) then \(u^p = \text{Dom}(f_\rho^{\ell, p}) \subseteq \text{Dom}(f_\rho^{\ell, r}) \), so clause (c) is satisfied, and similarly clause (c) for \(q \leq Q r \). \ q.e.d.

Claim 4.13. \(Q \) satisfies the \(\lambda^+ \)-c.c.

Proof. Let \(p_\alpha \in Q \) for \(\alpha < \lambda^+ \), so by Claim 4.10 there are \(q_\alpha \) such that \(p_\alpha \leq Q q_\alpha \in Q^+ \), now use the \(\Delta \)-system lemma: \(S_{\lambda^+} = \{ \delta < \lambda^+ : \text{cf}(\delta) = \lambda \} ; \)
now if $\delta \in S_{\lambda^+}^\lambda$ then $p|\delta \in Q \land \sup(u^p|\delta) < \delta$ and $\lambda \geq |\{p \in Q : u^p = u\}$ for any u. Hence for some stationary $S \subseteq S_{\lambda^+}^\lambda$ and some p_* and for any $\delta \in S$ and $\delta_1 < \delta_2 \in S$, we get $q_{\delta_1}|\delta = p_*$ and $\sup(u^{p_*}) < \delta_2$. So for any $\delta_2 < \delta_2$ from S by Claim 4.12 the condition $q_{\delta_1}, q_{\delta_2}$ are compatible.

Q.E.D.

Define a \mathbb{Q}-name $J_\ell \in K_{\mu}^{oi}$, as follows: $Q_{J_\ell} = \mu, \mathbb{S}_{J_\ell} = \cup\{\mathbb{S}_p^\ell : p \in G_{\mathbb{Q}}\}$, $\prec_{J_\ell} = \cup\{\prec_p : p \in G_{\mathbb{Q}}\}$, F_n^ℓ is a unary function, the identity on λ^+ and $\eta \in \mathbb{S}_{J_\ell}$ implies $F_n (\eta) = \eta(n)$. Now for $\ell \in \{1, 2\}$ and $p \in Q$ let $J_p^\ell \in K_{oi}$ be defined as follows: J_p^ℓ has universe $u^p \cup \mathbb{S}_n^\ell$, $\prec_{J_\ell} = \prec_p$, $Q_{J_\ell} = u^p$, and $F_n^p (\eta) = \eta(n)$.

(a) $\models_{\mathbb{Q}} \langle J_\ell \in K_{\lambda^+}^{oi} \rangle$.

(b) $\models_{\mathbb{Q}} \langle \text{for each } \delta < \lambda^+ \text{ divisible by } \lambda \text{ the linear order } ([\delta, \delta + \lambda), \prec_{J_\ell} \cup ([\delta, \delta + \lambda)]) \text{ is a saturated linear order and } \alpha + \lambda \leq \beta < \lambda^+ \Rightarrow \alpha < \prec_{J_\ell} \beta\rangle$.

(c) $p \in Q \Rightarrow p \models_{\mathbb{Q}} \langle J_p^\ell \subseteq J_\ell \rangle$ for $\ell = 1, 2$.

Proof. Why? Think! Q.E.D.

Claim 4.15. If $\delta < \lambda^+$ is divisible by λ then $\models_{\mathbb{Q}} \langle J_\ell|\delta \in K_{\lambda^+}^{oi} \rangle$ where $J_\ell|\delta = ((\delta \cup (P_{J_\ell} \cap \omega \delta), Q_{J_\ell} \cap \delta, P_{J_\ell}^\ell|\delta, F_n^\ell|((\delta \cup (P_{J_\ell} \cap \omega \delta)))_{n<\omega})$.}

Claim 4.16. $\models_{\mathbb{Q}} \langle \text{EM}_{\tau} (J_1, \Phi), \text{EM}_{\tau} (J_2, \Phi) \rangle$ are $\text{EF}_{\lambda, \lambda^+}^+$-equivalent (so the games are of length $< \lambda$, and the player AIS chooses sets of cardinality $< \lambda^+$).

Proof. To show the $\text{EF}_{\lambda, \lambda^+}^+$-equivalence, it suffices to show that $\models_{\mathbb{Q}} \langle J_1, J_2 \rangle$ are $\text{EF}_{\lambda, \lambda^+}^+$-equivalent” by Proposition 2.9 as $\lambda \geq \aleph_1 + |T_1|$. From Claim 4.7, recall $\Lambda^* = \{\rho : \rho \text{ is an increasing sequence of ordinals } < \lambda^+ \text{ divisible by } \lambda \text{ of length } < \lambda\}$, (is the same in V and $V^{\mathbb{Q}}$). For $\rho \in \Lambda^*$ let $f_{\rho} = \cup\{f_p^\rho : p \in G, p \in \Lambda^p\}$ and by clauses (e1) and (e5) in the definition of \mathbb{Q} and (a) in the definition of $\leq_{\mathbb{Q}}$, we easily get $\models_{\mathbb{Q}} \langle f_{\rho} \text{ a partial isomorphism from } J_1 | \sup \text{ Rang}(\rho) \text{ into } J_2 | \sup \text{ Rang}(\rho) \rangle$ (cf. the definition in Claim 4.15).

Now $\models_{\mathbb{Q}} \langle \text{Dom}(f_{\rho}) = \sup \text{ Rang}(\rho) \rangle$ as if $G \subseteq Q$ is generic over V, for any $\alpha < \sup \text{ Rang}(\rho)$ for some $p \in G$ we have $\alpha \in u^p \land \rho \in \Lambda^p$ by Claim 4.8,
and there is \(q \) such that \(p \leq q \in G, p \neq q \) by Claim 4.9, so recalling (c) from the definition of \(\leq_Q \) we are done. Similarly \(\models_Q \) “\(\text{Rang}(f_\rho) = \sup \text{Rang}(\rho) \)".

Also \(\rho < q \) implies \(\models_Q f_\rho \subseteq f_q \). For the EF\(^+\)-version we have to analyze dependence relations, which is straightforward as in the proof of Theorem 5.2. So \(\langle f_\rho : \rho \in \Lambda^* \rangle \) exemplifies the equivalence.

Q.E.D.

Claim 4.17. \(\models_Q "M_1 = \text{EM}_{\tau(T)}(J_1, \Phi), M_2 = \text{EM}_{\tau(T)}(J_2, \Phi) are not isomorphic"."

Proof. Let \(M_{\ell}^+ = \text{EM}(J_\ell, \Phi) \) so \(M_{\ell}^+ \upharpoonright \tau(T) = M_\ell \) for \(\ell = 1, 2 \), and assume towards a contradiction that \(p \in Q, \) and \(p \models_Q "q \) is an isomorphism from \(M_1 \) onto \(M_2 \)". For each \(\delta \in S_{\lambda^+} : = \{ \delta < \lambda^+ : \text{cf}(\delta) = \lambda \} \) by Claims 4.2 and 4.3 we can find \(p_\delta \in Q \) above \(p \) and \(g_\delta \) such that \(p \leq p_\delta, \delta \in u^{p_\delta}, p_\delta \models Q "g_\delta \) is \(g|\text{EM}(J_1^{p_\delta}, \Phi)" \), and \(g_\delta \) is an isomorphism from \(\text{EM}_{\tau(T)}(J_1^{p_\delta}, \Phi) \) onto \(\text{EM}_{\tau(T)}(J_2^{p_\delta}, \Phi) \).

We can find stationary \(S \subseteq S_{\lambda^+} \) and \(p^* \) such that \(p_\delta|\delta, \) defined in Claim 4.11 is \(p^* \) for \(\delta \in S, \) for \(\delta_1, \delta_2 \in S, u^{p_{\delta_1}}, u^{p_{\delta_2}} \) has the same order type and the order preserving mapping \(\pi_{\delta_1, \delta_2} \) from \(u^{p_{\delta_2}} \) onto \(u^{p_{\delta_1}} \) induce an isomorphism from \(p_{\delta_2} \) onto \(p_{\delta_1}, \) and if \(\delta_1 < \delta_2 \in S \) then \(\sup(u^{p_{\delta_1}}) < \delta_2 \).

Now choose \(\eta^* = (\delta_n^* : n < \omega) \) such that \(\delta_n^* < \delta_{n+1}^*, \delta_n^* = \sup(S \cap \delta_n^*) \) and \(\delta_n^* \in S, \) and let \(\delta^* = \sup\{\delta_n^* : n < \omega\} \).

We can now define \(q \in Q \) as follows \(u^q = \bigcup\{p_\delta^* : n < \omega\}, <^q = \{((\alpha, \beta) : \alpha <^q \beta) \text{ for some } n \text{ or } \alpha + \lambda \leq \beta, (\alpha, \beta) \subseteq u^q, \text{ equivalently for some } m < n, \alpha \in u^{p_{\delta_m^*}} \setminus \delta_n^*, \beta \in u^{p_{\delta_m^*}} \setminus \delta_n^*, \} \), \(\sigma_1^q = \bigcup\{S_{\delta}^* \in u^q \cup \{\eta^*\}, \Sigma_2^q = \bigcup\{S_{\delta_n^*}^* : n < \omega, \Lambda^q \cup \{\Lambda^p_{\delta_n^*} : n < u\}, \) and \(f_{\rho+}^q = f_{\rho+}^{p_{\delta_n^*}} \) if \(\rho \in \Lambda^p_{\delta_n^*} \).

So there is a pair \((q_*, g^+) \) such that \(q \leq_Q q_*, q_* \models_Q "g^+ = g|\text{EM}(J_1^{q_*}, \Phi), \) and \(g^+ \) is an automorphism of \(\text{EM}_{\tau(T)}(J_1^{q_*}, \Phi) \). So \(g^+(a_\eta^*) \in \text{EM}(J_1^{q_*}, \Phi) \) hence is of the form \(\sigma M^3_{\delta_n^*}^{p_{\delta_n^*}}(a_{t_0}, \ldots, a_{t_{n-1}}) \) for \(t_0, \ldots, t_{n-1} \in J_2^{q^+} \) and a \(\tau_{\delta} \)-term \(\sigma(x_0, \ldots, x_{n-1}) \). Note that by the definition of \(\leq_Q \):

Subclaim 4.18. If \(\eta \in \mathcal{S}_2^{q_2} \) then \(\text{Rang}(\eta) \cap u^q \) is bounded in \(\delta^* \).

Proof. If \(\eta \in \mathcal{S}_2^2 \) this holds by our choice of \(q \) and if \(\eta \notin \mathcal{S}_2^2 \) then \(Rang(\eta) \cap u^q \) is finite so as \(u^q \subseteq \delta \) it follows that \(Rang(\eta) \cap u^q \) is bounded in \(\delta^* \).

Q.E.D.

We can find \(n(*) < \omega \) such that for each \(k < n \) and \(\ell < n \) we have

(a) if \(t_\ell \in Q^{J_2^{q^+_2}}, \) i.e., \(t_\ell \in u^{q^+} \subseteq \lambda^+ \) then \(t_\ell \leq q^+ \delta_{n(*)}^*, \) and
(b) if $t_\ell \in P^{3^+}$, i.e., $t_\ell \in \mathfrak{S}_2$ then \{\(F_n^{+\ast}(t_\ell) : n < \omega\) is disjoint to $[\delta^{+\ast}_{n(s)}, \delta^{\ast}) \cap u^q$; using “\(T\) is stable”. The rest of the proof is exactly as in Propositions 3.5 and 3.7.

Q.E.D. (Claim 4.17)

Q.E.D. (Theorem 4.1)

\section{Theories with order}

Recall from [3, 3.19]:

Theorem 5.1. If $\lambda = \mu^+, \text{cf}(\mu), \lambda = \lambda^{<\kappa}, \kappa = \text{cf}(\kappa) < \kappa(T)$ and T is unstable, then there are EF\(_{\mu \times \kappa, \lambda^+}\)-equivalent non-isomorphic models of T of cardinality λ.

The new point in the following Theorem 5.2 is the use of EF\(_+\) rather than EF.

Theorem 5.2. Assume $\lambda = \lambda^{<\theta}$ and λ is regular uncountable, $T \subseteq T_1$ are complete first order theories of cardinality $< \lambda$.

1. If T is unstable then there are models M_1, M_2 of T_1 of cardinality λ^+, EF\(_{\lambda, \theta, \lambda^+}\)-equivalent with non-isomorphic τ_T-reducts.

2. Assume $\Phi \in \mathcal{T}_K$ is proper for linear orders, $\bar{\sigma} = \langle \sigma_i(x) : i < \iota(\ast) \rangle$ a sequence of terms from τ_Φ, $\bar{x}^\ell = \langle x^i : i < \iota(\ast) \rangle, \iota(\ast) < \lambda, \varphi(\bar{x}^1, \bar{x}^2)$ is a formula in $\mathcal{L}(\tau_T), \tau \leq \tau_T$ (any logic) and for every linear order I letting $M = \text{EM}(I, \Phi), b_I = \langle \sigma_i^M(a_t) : i < \iota(\ast) \rangle$ we have $(M[\tau] \models \varphi[b_s, b_t]|_{\iota < \iota(\ast)}, \text{for every } s, t \in I$. Then there are linear orders I_1, I_2 of cardinality λ^+ such that M_1, M_2 are EF\(_{\lambda, \theta, \lambda^+}\)-equivalent but not isomorphic where $M_\ell = \text{EM}_T(I_\ell, \Phi)$ for $\ell = 1, 2$.

3. If every EM\(_T(I, \Phi)\) is a model of T_1 then in 2., the models M_1, M_2 are in PC\((T_1, T)\).

Proof. To see 1., let $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}(\tau_T)$ order some infinite subset of mM for some $M \models T$. Let Φ be as in Definition 3.3, i.e., proper for linear orders such that $\tau_{T_1} \subseteq \tau(\Phi), |\tau(\Phi)| = |T_1|$ and for every linear order $I, \text{EM}(I, \Phi)$ (we allow the skeleton to consist of m-tuples rather than elements) is a model of T_1 satisfying $\varphi[\bar{a}_s, \bar{a}_t]$ iff $s <_I t$. Now we can apply part 2. with $i(\ast) = m$.

In order to prove 2., we choose I such that I is a linear order of cardinality λ (yes, not λ^+), if $\alpha, \beta \in (1, \lambda]$ then $(I \times \alpha) + (I \times \beta)^* = I$ (equivalently every $\alpha, \beta \in [1, \lambda^+]$), I is isomorphic to its inverse, and I has cofinality λ. For every $S \subseteq S^{\lambda^+}_\lambda = \{\delta < \lambda^+ : \text{cf}(\delta) = \lambda\}$ we define $I_S = \sum_{\alpha < \lambda^+} I_{S, \alpha}$
where $I_{S,\alpha}$ is isomorphic to I if $\alpha \in \lambda^+ \setminus S$ and isomorphic to the inverse of $I \times \omega$ otherwise.

Claim 5.3. If $S_1, S_2 \subseteq S^{\gamma^+}_\lambda$ then the models EM(I_{S_2}, Φ), EM(I_{S_1}, Φ) are EF$^+_{\lambda, \theta, \lambda^+}$-equivalent.

Proof. Let $J_{\ell, \gamma} = \sum_{\alpha < \gamma} I_{\ell, \alpha}$. Let $\mathcal{F} := \{f :$ for some non-zero ordinal $\gamma < \lambda^+, f \in I_{\gamma}$ and $[\gamma \in S_1 \leftrightarrow \gamma \in S_2]\}$ where $\mathcal{F}_\gamma := \{f$ is an isomorphism from $\sum_{\alpha < \gamma} I_{S_1, \alpha}$ onto $\sum_{\alpha < \gamma} I_{S_2, \alpha}\}$. Then we have:

- $\mathcal{F}_\gamma \neq \emptyset$ for $\gamma < \lambda^+$.
- If $f \in \mathcal{F}_\gamma$ and $[\gamma \in S_1 \equiv \gamma \in S_2]$ and $\gamma < \beta < \lambda$ then f can be extended to some $g \in \mathcal{F}_\beta$.
- If $\gamma < \lambda, X_\ell \subseteq I_\ell$ has cardinality $< \lambda^+$ for $\ell = 1, 2$ then for some successor $\beta, \gamma < \beta < \lambda^+$ and $X_\ell \subseteq J_{\ell, \beta}$ for $\ell = 1, 2$.
- If $\gamma_i \in S_1 \iff \gamma_i \in S_2$ for $i < \delta, \delta$ a limit ordinal $< \lambda$ and $\langle \gamma_i : i < \delta\rangle$ is increasing then $\gamma_\delta := \bigcup\{\gamma_i : i < \delta\}$ satisfies $\gamma_\delta \in S_1 \equiv \gamma_\delta \in S_1$.

Lastly, we have to deal with **Case 2** in Definition 2.5, so let us assume that $f_* \in \mathcal{F}_{\gamma_*}, [\gamma_* \in S_1 \equiv \gamma_* \in S_2]$ and $R_\ell \subseteq \theta^>(M_\ell)$ for $\ell = 1, 2$ are as there for f_*. This holds because the strategy is simple, e.g., with no memory. Now if f does not map the definition of R_1 in M_1 to the definition of R_2 in M_2 we can use **Subcase 2B** there, so we assume this does not occur. Let $\ell \in \{1, 2\}$, and get:

- Let $e_\ell = \{(\bar{s}, \bar{t}) : \bar{s}, \bar{t} \in \theta^>(I_\ell)$ and some automorphism of I_ℓ over I_{ℓ, γ_*} maps \bar{s} to $\bar{t}\}$.
- Let Y_ℓ be the set of e_ℓ-equivalence classes.

Note that for $\ell \in \{1, 2\}, n < \omega$ and $y_0, \ldots, y_n \in Y_\ell$ the following are equivalent:

- (a) some $\bar{a} \in y_n$ depend (by R_1) on $y_0 \cup \ldots \cup y_{n-1}$, and
- (b) every $\bar{a} \in y_n$ depends (by R_1) on $y_0 \cup \ldots \cup y_{n-1}$.

So R_1 induce a 1-dependence relation on Y_1, so let $\langle y_i : i < i(*)\rangle$ be a maximal independent subset of Y_1. Therefore, it is enough to deal with one y_i. Now we can find $\bar{t}_{i, \gamma} \in y_i$ such that $\text{Rang}(\bar{t}_{i, \gamma}) \setminus I_{\ell, \gamma_*} \subseteq I_{\ell, \gamma_*+2} \setminus I_{\ell, \gamma_*+1}$ for each $\gamma \in [\gamma_*, \lambda^+]$ as I_1 has enough automorphisms. If $\{\bar{t}_{i, \gamma} : \gamma \in [\gamma_*, \lambda^+]\}$ is not R_1-independent, then $\dim(y_i)$ is finite, in fact 1 or 0. So we choose β_* such that $\gamma_* < \beta_* < \lambda^+$ and $\beta_* \in S_1 \equiv \beta_* \in S_2$ and for every $i < i(*)$, if $\dim(X_{y_i})$ is finite then y_i has a maximal R_1-independent set.
included in \(\varepsilon(\gamma) (J_1, \beta_\gamma) \). [Why is this possible? Because for any such \(\beta_* \) is an automorphism of \(I_2 \) over \(J_1, \gamma \), mapping \(I_{\beta_*+2} \) onto \(I_{\gamma+2} \).]

Let \(g \in F_{\beta_*} \) extend \(f \); using it we can choose \(\langle \langle \bar{a}_1, \bar{a}_2 \rangle : \zeta < \zeta^* \rangle \) as required.

\[\text{q.e.d. (Claim 5.3)} \]

Claim 5.4. If \(S_1, S_2 \subseteq S_\lambda^+ \) and \(S_1 \setminus S_2 \) is stationary, then \(\text{EM}_\tau(I_{S_1}, \Phi), \text{EM}_\tau(I_{S_2}, \Phi) \) are not isomorphic.

\[\text{Proof. This is similar to the proof in [10, III, §3] (or [15, III, §3] = [16, §3]), only easier. In fact, imitating it we can represent the invariants from there.} \]

\[\text{q.e.d. (Theorem 5.2)} \]

Part 3. of Theorem 5.2 is obvious.

\[\text{q.e.d. (Theorem 5.2)} \]

Corollary 5.5. Assume \(T \) is a (first order complete) theory.

1. If \(T \) is unstable, then \((T, \ast)\) is fat.

2. If \(T \) is unstable or stable with DOP, or stable with OTOP, then \(T \) is fat.

3. For every \(\mu \) there is a \(\mu \)-complete, class forcing \(P \) such that in \(V^P \) we have: if \(T \) is not strongly dependent or just not strongly stable, then \(T \) is fat, moreover \((T, \ast)\) is fat.

\[\text{Proof. We get 1. by Theorem 5.2. The proof of 2. is similar, the only difference is that the formula defining the “order” is not first order and the length of the relevant sequences may be infinite but still \(\leq |T| \) (cf. [11, XIII]).} \]

Now, by 1. and 2., we should consider only stable, not strongly stable \(T \). Choose a class \(C \) of regular cardinals such that \(\lambda \in C \Rightarrow (2^{<\lambda})^+ < \text{Min}(C \setminus \lambda^+) \) and \(\text{Min}(C) > \mu \). We iterate with full support \(\langle P_\mu, Q_\mu : \mu \in C \rangle \) with \(Q_\mu \) as in Theorem 4.1.

\[\text{q.e.d.} \]

Proposition 5.6. Assume \(T \subseteq T_1, \lambda = \lambda^\kappa \) is not necessary regular and \(\kappa = \text{cf}(\kappa) < \kappa(T), \) e.g. \(T \) is unstable. Then there are \(\text{EF}^+_{\lambda \times \kappa, \lambda^+, \lambda^+} \)-equivalent non-isomorphic models from \(\text{PC}(T_1, T) \) of cardinality \(\lambda^+ \).

\[\text{Proof. As in [3], following the proof of Theorem 5.2.} \]

We get the following corollaries via old results, as mentioned in the introduction. Note that Corollary 5.7 is on elementary classes and Corollary 5.8 on small enough pseudo elementary classes.

Corollary 5.7 (ZFC). For first order countable complete first order theory \(T \) the following conditions are equivalent:
(A) The theory T is superstable with NDOP and NOTOP.

(B) If $\lambda = \text{cf}(\lambda) > |T|$ and $M_1, M_2 \in \text{Mod}_T(\lambda)$ are $L_{\infty,\lambda}(\tau_T)$-equivalent then M_1, M_2 are isomorphic.

(B)$_1$ Like (B)$_2$ for some $\lambda = \text{cf}(\lambda) > |T|.$

(C) If $\lambda = \text{cf}(\lambda) > |T|$ and $M_1, M_2 \in \text{Mod}_T(\lambda^+)$ are $\text{EF}_{\omega,\lambda}$-equivalent then M_1, M_2 are isomorphic.

(D) For some regular $\lambda > |T|$, if $M_1, M_2 \in \text{Mod}_T(\lambda^+)$ are $\text{EF}_{\lambda,\lambda^+}$-equivalent then they are isomorphic.

Proof. Clauses (A), (B)$_1$, and (B)$_2$ are equivalent: in [11, XIII, Th.1.11], we proved $(A) \Rightarrow (B)_1 \land (B)_2$, and the other implication holds by [9]. Now by the definitions trivially $(B)_1 \Rightarrow (C) \Rightarrow (D)$. Lastly, by Theorem 5.1 we have $\neg(A) \Rightarrow \neg(D)$, i.e., $(D) \Rightarrow (A)$ so we have the circle. q.e.d.

Corollary 5.7 tells us what we know about $(A)_0$ and $(B)_0$ of Question 2.1.

Corollary 5.8 (ZFC). For first order countable complete first order theory T and $\kappa \geq 2^{\aleph_0}$ the following conditions are equivalent:

(A) T is unsuperstable,

(B)$_\kappa$ for every $\lambda > \kappa \geq |T|$ and (κ, T)-candidate ψ (cf. Definition 1.2), and ordinal $\alpha < \lambda$ satisfying $|\alpha|^+ = \lambda \Rightarrow |\alpha| \leq |\alpha| \times \omega$, there are $\text{EF}_{\alpha,\lambda}$-equivalent non-isomorphic models $M_1, M_2 \in \text{PC}_{\tau(T)}(\psi)$ of cardinality λ,

(C)$_\kappa$ for some $\lambda > \kappa \geq |T|$, for no (κ, T)-candidate ψ is the class $\text{PC}_{\tau(T)}(\psi)$ categorial in λ.

Proof. First, assume T is superstable, so clause (A) holds. By the proofs of [11, VI, §4] there is a (κ, T)-candidate ψ such that $\text{PC}_{\tau(T)}(\psi)$ is the class of saturated models of T, (in details, if $n < \omega, \vec{a} \in {}^n\mathfrak{C}$, $\text{tp}(\vec{b}, \vec{a}, \mathfrak{C})$ is stationary, $q = \text{tp}(\vec{b}, \emptyset, \mathfrak{C}), p = \text{tp}(\langle \vec{a} \rangle, \vec{b}, \emptyset, \mathfrak{C})$ then let $\psi_{p,q}$ be such that $M \models \psi_{p,q}$ iff for every $\vec{b}' \in {}^nM$ realizing the type $q(\vec{y})$, the function $c \mapsto F_{p,q}(c, \vec{b}')$ is one-to-one and if $k < \omega, c_0, \ldots, c_k \in M$ are pairwise distinct then $\text{tp}_{\lambda, \varphi, \tau(T)}(F_{p,q}(c_k), \{F_{p,q}(c_0), \ldots, F_{p,q}(c_{k-1})\} \cup \vec{b}', M)$ extends $p(x, \vec{b}')$ and does not fork over M. Lastly, $\psi = \bigwedge \{\psi_{p,q} : p, q$ as above$\}$ so $\in \mathcal{L}_{\kappa^+, \omega}$. So in the present case also $(B)_\kappa$ and $(C)_\kappa$ hold.

Secondly, assume T is not superstable, so clause (A) does not hold and we shall prove the rest. Let ψ be a (κ, T)-candidate. Take $\Phi \in \mathcal{Y}_\kappa^{\omega_{\tau \text{-tr}}}$ witnessing unsuperstability and use Claim 1.3 and Theorem 5.1. q.e.d.
References

